Высота тетраэдра по векторам

Как найти высоту тетраэдра формула
Высота тетраэдра по векторам

Высота тетраэдра — равна корню квадратному из двух третих, помноженному на длину ребра тетраэдра

(h – высота тетраэдра, a – ребро тетраэдра)

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Вывод формулы высоты тетраэдра

Чтобы получить формулу высоты тетраэдра необходимо произвести дополнительные геометрические построения. На рисунке красные линии CF и FS — это высоты соответствующих правильных треугольников ABC и ABS:

Теперь в треугольнике CFS известны все стороны. Высота тетраэдра, как видно из геометрических построений — это высота треугольника CFS. Подставив стороны треугольника в формулу и произведя простые сокращения (используем формулу разность квадратов) получим формулу (1).

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Высота тетраэдра по векторамТреугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Высота тетраэдра по векторамНо также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Высота тетраэдра по векторам

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна Высота тетраэдра по векторам
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

Высота тетраэдра по векторам, где
BM=Высота тетраэдра по векторам, DM=Высота тетраэдра по векторам, BD=a,
p=1/2 (BM+BD+DM)= Высота тетраэдра по векторам
Подставим эти значения в формулу высоты. Получим
Высота тетраэдра по векторам
Вынесем 1/2a. Получим

Высота тетраэдра по векторам
Высота тетраэдра по векторам
Применим формулу разность квадратов
Высота тетраэдра по векторам
После небольших преобразований получим
Высота тетраэдра по векторам
Высота тетраэдра по векторам
Объем любого тетраэдра можно рассчитать по формуле
Высота тетраэдра по векторам,
где Высота тетраэдра по векторам,
Высота тетраэдра по векторам
Подставив эти значения, получим
Высота тетраэдра по векторам

Таким образом формула объема для правильного тетраэдра

Высота тетраэдра по векторам

где a –ребро тетраэдра

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра
Высота тетраэдра по векторам
Из вершины Высота тетраэдра по векторампроведем векторы Высота тетраэдра по векторам, Высота тетраэдра по векторам, Высота тетраэдра по векторам.
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Высота тетраэдра по векторам
Высота тетраэдра по векторам
Высота тетраэдра по векторам

Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

Высота тетраэдра по векторам

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Свойства

Зная высоту тетраэдра, можно вычислить его ребро, перевернув формулу так, чтобы ребро было равно корню из трех вторых, умноженному на высоту. a=√(3/2) h

Выразив таким образом ребро тетраэдра через его высоту, можно найти периметр тетраэдра, то есть длину всех его ребер, площадь одной грани и площадь полной поверхности тетраэдра. Периметр тетраэдра будет равен шести длинам его ребер, площадь одной грани – ребру в квадрате, умноженному на корень из трех, деленный на четыре, а площадь полной поверхности – четырем площадям одной грани. P=6a=6√(3/2) h S_1=(√3 a^2)/4=(3√3 h^2)/8 S_(п.п.)=4S_1=(3√3 h^2)/2

Через высоту, подставленную вместо ребра в определенном соотношении можно найти соответственно и радиусы вписанной и описанной окружностей в основание тетраэдра. r=h/(2√2) R=h/√2

Апофема тетраэдра проходит из вершины к противоположной стороне грани под прямым углом и рассчитать ее можно как из прямоугольного треугольника с боковым ребром по той же грани, так и из прямоугольного треугольника во внутреннем пространстве тетраэдра с высотой. l=3h/(2√2)

Чтобы вычислить объем тетраэдра, необходимо возвести в куб ребро и разделить полученное значение на шесть корней из двух, либо подставить вместо ребра корень из трех вторых, умноженный на высоту и преобразовать формулу объема для высоты. V=(√3 h^3)/8

В тетраэдр можно вписать сферу или описать сферу около него, тогда, зная высоту, чтобы вычислить радиусы вписанной и описанной сфер, необходимо воспользоваться следующими, уже готовыми формулами. (рис.60.2, 60.3) r_1=h/4 R_1=3h/4

Видео:Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать

Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:§20 Нахождение объёма параллелипипедаСкачать

§20 Нахождение объёма параллелипипеда

Примеры

Пример 1. Проверим, лежат ли точки A (1, −1, 1) , B (2, 2, 3) , C (3, 1, 3) и D (0, 0, 1) в одной плоскости.

Решение. Вычисляем смешанное произведение векторов A B = , A C = и A D = :

( A B , A C , A D ) =
132
222
−110
= 1 · ( −2) − 3 · 2 + 2 · 4 = 0 .

Так как смешанное произведение равно нулю, то векторы компланарны и, следовательно, точки лежат в одной плоскости.

Пример 2. Даны вершины тетраэдра A (2, 3, 1) , B (4, 1, −2) , C (6, 3, 7) и D ( −5, −4, 8) . Найдем длину высоты, опущенной из вершины D на плоскость основания A B C (рис. 1).

Высота тетраэдра по векторам

Решение. Из вершины A проводим векторы A B = , A C = и A D = .

В соответствии с геометрическим смыслом смешанногопроизведения имеем:

V тетр. =

1
6

· V параллелеп =

1
6

| ( A B , A C , A D ) | .

С другой стороны,

V тетр. =

1
3

S ΔABC · h , &nbsp где &nbsp S ΔABC =

1
2

| [ A B , A C ] | .

Сравнивая эти равенства, получаем

h =

3 V тетр
S ΔABC

.

1. Вычисляем смешанное произведение:

( A B , A C , A D ) =
2−2−3
406
−7−77
= 2 · 42 + 2 · 70 + ( −3) · ( −28) = 308 .

Следовательно, V тетр. = 308/6 .

2. Вычисляем координаты векторного произведения:

📸 Видео

№362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторамСкачать

№362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторам

Площадь параллелограмма, построенного на данных векторахСкачать

Площадь параллелограмма, построенного на данных векторах

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Площадь треугольника, построенного на векторахСкачать

Площадь треугольника, построенного на векторах

Решение задач на векторное и смешанное произведения векторовСкачать

Решение задач на векторное и смешанное произведения векторов

Нахождение высоты тетраэдра.Скачать

Нахождение высоты тетраэдра.

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

№370. Высоты AM и DN правильного тетраэдра ABCD пересекаются в точке К. Разложите поСкачать

№370. Высоты AM и DN правильного тетраэдра ABCD пересекаются в точке К. Разложите по

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

№369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОАСкачать

№369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОА

Тетраэдр. 10 класс.Скачать

Тетраэдр. 10 класс.

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline
Поделиться или сохранить к себе: