Все о прямоугольном треугольнике огэ

Все о прямоугольном треугольнике огэ

Два острых угла прямоугольного треугольника относятся как 4:5. Найдите больший острый угол. Ответ дайте в градусах.

Сумма острых углов прямоугольного треугольника равна 90°. Острые углы прямоугольного треугольника относятся как 4 части к 5 частям, сумма этих углов 4 + 5 = 9 частей. Поэтому одна часть равна 10°. Так как больший угол содержит в себе 5 частей, он равен 5·10° = 50°.

В треугольнике ABC угол C равен 90°, Все о прямоугольном треугольнике огэНайдите AB.

Так как треугольник ABC — прямоугольный, то Все о прямоугольном треугольнике огэ. Имеем:

Все о прямоугольном треугольнике огэ

В треугольнике ABC угол C равен 90°, Все о прямоугольном треугольнике огэ. Найдите AB.

Так как треугольник ABC — прямоугольный, то Все о прямоугольном треугольнике огэ. Имеем:

Все о прямоугольном треугольнике огэ

Аналоги к заданию № 311387: 311399 311498 311500 Все

Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведенную к гипотенузе.

Пусть катеты имеют длины a и b, а гипотенуза — длину Все о прямоугольном треугольнике огэПусть длина высоты, проведённой к гипотенузе равна Все о прямоугольном треугольнике огэНайдём длину гипотенузы по теореме Пифагора:

Все о прямоугольном треугольнике огэ

Площадь прямоугольного треугольника может быть найдена как половина произведения катетов или как половина произведения высоты, проведённой к гипотенузе на гипотенузу:

Видео:Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭ

Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности

Класс: 9

Ключевые слова: математика , ОГЭ

1. Углы

Все о прямоугольном треугольнике огэ

Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).

Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).

Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).

Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.

2. Медиана, биссектриса, высота

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.

3. Треугольник

Сумма углов в любом треугольнике 180˚.

Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.

Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).

Все о прямоугольном треугольнике огэ

Равнобедренный треугольник — треугольник, у которого равны две стороны.

Свойства равнобедренного треугольника:

  • в равнобедренном треугольнике углы при основании равны;
  • в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;

Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)

Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Три признака равенства треугольников

I признак по двум сторонам и углу между ними

II признак (по стороне и прилежащим углам)

III признак (по трем сторонам)

Признаки подобия треугольников

I признак по двум равным углам

II признак по двум пропорциональным сторонам и углу между ними

III признак по трем пропорциональным сторонам

Площади подобных фигур относятся как коэффициент подобия в квадрате.

Объемы подобных фигур относятся как коэффициент подобия в кубе.

Треугольник называется прямоугольным, если один из его углов прямой.

Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).

Свойства прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусов.

Катет, лежащий против угла в 30˚, равен половине гипотенузы.

Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.

Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².

Пифагоровы тройки:

Признаки равенства прямоугольных треугольников

  • По двум катетам.
  • По гипотенузе и катету.
  • По катету и прилежащему острому углу.
  • По катету и противолежащему острому углу.
  • По гипотенузе и острому углу.

Признаки подобия прямоугольных треугольников:

  • По острому углу.
  • По пропорциональности двух катетов.
  • По пропорциональности катета и гипотенузы.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.

Высота прямоугольного треугольника: h=ab/c или h =Все о прямоугольном треугольнике огэ (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).

В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=​с/2=m​c).

3. Четырехугольники

Сумма углов в любом четырехугольнике 360˚.

Параллелограмм

Все о прямоугольном треугольнике огэ

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.

У параллелограмма противолежащие стороны равны и противолежащие углы равны.

Сумма любых двух соседних углов параллелограмма равна 180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Каждая диагональ делит параллелограмм на два равных треугольника.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Все о прямоугольном треугольнике огэ

Ромбом называется параллелограмм, у которого все стороны равны.

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.

Квадрат.

Квадрат – это прямоугольник, у которого все стороны равны.

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями: Все о прямоугольном треугольнике огэ.

Трапеция

Все о прямоугольном треугольнике огэ

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Равнобокой называется трапеция, у которой боковые стороны равны.

У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.

Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

4. Окружность

Все о прямоугольном треугольнике огэ

Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.

Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.

Прямая, имеющая с окружностью две общие точки, называется секущей.

Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.

Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

Вписанный угол, опирающийся на диаметр равен 90˚.

Все вписанные углы, опирающиеся на одну и туже дугу равны.

Теорема косинусов:

Теорема синусов:

Все о прямоугольном треугольнике огэ

5. Формулы площадей

Видео:КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

🔥 Видео

Все о прямоугольных треугольниках | Математика ОГЭ – Дядя АртемСкачать

Все о прямоугольных треугольниках | Математика ОГЭ – Дядя Артем

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК ОГЭ ЕГЭСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК ОГЭ ЕГЭ

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

ОГЭ 2023 по математике. Все, что надо знать про прямоугольные треугольники. Решаем №15, 18, 23.Скачать

ОГЭ 2023 по математике. Все, что надо знать про прямоугольные треугольники. Решаем №15, 18, 23.

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 😉 #егэ #математика #профильныйегэ #shorts #огэ

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Важное свойство прямоугольного треугольника #огэ #математика #огэматематика #данирСкачать

Важное свойство прямоугольного треугольника #огэ #математика #огэматематика #данир

Медиана в прямоугольном треугольнике на ЕГЭ и ОГЭ по профильной математикеСкачать

Медиана в прямоугольном треугольнике на ЕГЭ и ОГЭ по профильной математике

Медиана прямоугольного треугольника— Геометрия ОГЭСкачать

Медиана прямоугольного треугольника— Геометрия ОГЭ

ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВЫСОТА ТРЕУГОЛЬНИКА 😉 #егэ #математика #профильныйегэ #shorts #огэ

ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать

ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрия

Задание 15 #огэ #математика #shortsСкачать

Задание 15 #огэ #математика #shorts

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Что с углами. Прямоугольный треугольник #shortsСкачать

Что с углами. Прямоугольный треугольник #shorts

Свойство прямоугольного треугольника | Молодой репетиторСкачать

Свойство прямоугольного треугольника | Молодой репетитор

Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.
Поделиться или сохранить к себе: