Все формулы по теме окружности для огэ

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Все формулы по теме окружности для огэ

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности
Содержание
  1. Определение окружности
  2. Отрезки в окружности
  3. Дуга в окружности
  4. Углы в окружности
  5. Длина окружности, длина дуги
  6. Площадь круга и его частей
  7. Теорема синусов
  8. Примеры решений заданий из ОГЭ
  9. Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности
  10. 1. Углы
  11. 2. Медиана, биссектриса, высота
  12. 3. Треугольник
  13. 3. Четырехугольники
  14. 4. Окружность
  15. Все формулы окружности для огэ
  16. Геометрия. Урок 5. Окружность
  17. Определение окружности
  18. Отрезки в окружности
  19. Дуга в окружности
  20. Углы в окружности
  21. Длина окружности, длина дуги
  22. Площадь круга и его частей
  23. Теорема синусов
  24. Примеры решений заданий из ОГЭ
  25. Площадь круга и его частей. Длина окружности и ее дуг
  26. Основные определения и свойства
  27. Формулы для площади круга и его частей
  28. Формулы для длины окружности и её дуг
  29. Площадь круга
  30. Длина окружности
  31. Длина дуги
  32. Площадь сектора
  33. Площадь сегмента
  34. Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности
  35. 1. Углы
  36. 2. Медиана, биссектриса, высота
  37. 3. Треугольник
  38. 3. Четырехугольники
  39. 4. Окружность

Видео:Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Все формулы по теме окружности для огэ

Видео:ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТ

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Вся геометрия 8 класса с нуля для ОГЭ по математике 2024Скачать

Вся геометрия 8 класса с нуля для ОГЭ по математике 2024

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:📌 Все темы и формулы для ОГЭ по ссылке в комментах 😉 #математика #огэ #огэматематикаСкачать

📌 Все темы и формулы для ОГЭ по ссылке в комментах 😉 #математика #огэ #огэматематика

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |МатематикаСкачать

Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |Математика

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:📌 ВСЕ темы и формулы для ОГЭ по ссылке в комментариях 😉 #математика #огэ #огэматематика #данирСкачать

📌 ВСЕ темы и формулы для ОГЭ по ссылке в комментариях 😉 #математика #огэ #огэматематика #данир

Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности

Класс: 9

Ключевые слова: математика , ОГЭ

1. Углы

Все формулы по теме окружности для огэ

Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).

Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).

Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).

Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.

2. Медиана, биссектриса, высота

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.

3. Треугольник

Сумма углов в любом треугольнике 180˚.

Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.

Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).

Все формулы по теме окружности для огэ

Равнобедренный треугольник — треугольник, у которого равны две стороны.

Свойства равнобедренного треугольника:

  • в равнобедренном треугольнике углы при основании равны;
  • в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;

Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)

Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Три признака равенства треугольников

I признак по двум сторонам и углу между ними

II признак (по стороне и прилежащим углам)

III признак (по трем сторонам)

Признаки подобия треугольников

I признак по двум равным углам

II признак по двум пропорциональным сторонам и углу между ними

III признак по трем пропорциональным сторонам

Площади подобных фигур относятся как коэффициент подобия в квадрате.

Объемы подобных фигур относятся как коэффициент подобия в кубе.

Треугольник называется прямоугольным, если один из его углов прямой.

Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).

Свойства прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусов.

Катет, лежащий против угла в 30˚, равен половине гипотенузы.

Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.

Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².

Пифагоровы тройки:

Признаки равенства прямоугольных треугольников

  • По двум катетам.
  • По гипотенузе и катету.
  • По катету и прилежащему острому углу.
  • По катету и противолежащему острому углу.
  • По гипотенузе и острому углу.

Признаки подобия прямоугольных треугольников:

  • По острому углу.
  • По пропорциональности двух катетов.
  • По пропорциональности катета и гипотенузы.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.

Высота прямоугольного треугольника: h=ab/c или h =Все формулы по теме окружности для огэ (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).

В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=​с/2=m​c).

3. Четырехугольники

Сумма углов в любом четырехугольнике 360˚.

Параллелограмм

Все формулы по теме окружности для огэ

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.

У параллелограмма противолежащие стороны равны и противолежащие углы равны.

Сумма любых двух соседних углов параллелограмма равна 180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Каждая диагональ делит параллелограмм на два равных треугольника.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Все формулы по теме окружности для огэ

Ромбом называется параллелограмм, у которого все стороны равны.

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.

Квадрат.

Квадрат – это прямоугольник, у которого все стороны равны.

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями: Все формулы по теме окружности для огэ.

Трапеция

Все формулы по теме окружности для огэ

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Равнобокой называется трапеция, у которой боковые стороны равны.

У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.

Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

4. Окружность

Все формулы по теме окружности для огэ

Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.

Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.

Прямая, имеющая с окружностью две общие точки, называется секущей.

Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.

Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

Вписанный угол, опирающийся на диаметр равен 90˚.

Все вписанные углы, опирающиеся на одну и туже дугу равны.

Теорема косинусов:

Теорема синусов:

Все формулы по теме окружности для огэ

5. Формулы площадей

Видео:Все про окружность для задания 16 на ОГЭ по математикеСкачать

Все про окружность для задания 16 на ОГЭ по математике

Все формулы окружности для огэ

Видео:Всё об окружностях для ОГЭ🔥🔥🔥Скачать

Всё об окружностях для ОГЭ🔥🔥🔥

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Все формулы по теме окружности для огэ

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:ОГЭ-2022. НЕОБХОДИМЫЕ ФОРМУЛЫ. ВОЛШЕБНЫЙ БЛОКНОТ.Скачать

ОГЭ-2022. НЕОБХОДИМЫЕ ФОРМУЛЫ. ВОЛШЕБНЫЙ БЛОКНОТ.

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Все формулы по теме окружности для огэ

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Без этих формул ты не сдашь ОГЭ! / Самые важные формулы по геометрииСкачать

Без этих формул ты не сдашь ОГЭ! / Самые важные формулы по геометрии

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnlineСкачать

Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnline

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:ВСЯ ГЕОМЕТРИЯ НА ОГЭ ЗА 3 ЧАСА | Математика ОГЭ 2023 | УмскулСкачать

ВСЯ ГЕОМЕТРИЯ НА ОГЭ ЗА 3 ЧАСА | Математика ОГЭ 2023 | Умскул

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Вспоминаем все формулы ОГЭ по физике | Физика ОГЭ 2023 | УмскулСкачать

Вспоминаем все формулы ОГЭ по физике | Физика ОГЭ 2023 | Умскул

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:📌 ВСЕ формулы для ОГЭ в комментариях 😉 #математика #огэ #огэматематикаСкачать

📌 ВСЕ формулы для ОГЭ в комментариях 😉 #математика #огэ #огэматематика

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:Задача на окружности из ОГЭ-2023!! Разбор за 30 секСкачать

Задача на окружности из ОГЭ-2023!! Разбор за 30 сек

Площадь круга и его частей. Длина окружности и ее дуг

Все формулы по теме окружности для огэОсновные определения и свойства. Число π
Все формулы по теме окружности для огэФормулы для площади круга и его частей
Все формулы по теме окружности для огэФормулы для длины окружности и ее дуг
Все формулы по теме окружности для огэПлощадь круга
Все формулы по теме окружности для огэДлина окружности
Все формулы по теме окружности для огэДлина дуги
Все формулы по теме окружности для огэПлощадь сектора
Все формулы по теме окружности для огэПлощадь сегмента

Все формулы по теме окружности для огэ

Основные определения и свойства

ФигураРисунокОпределения и свойства
ОкружностьВсе формулы по теме окружности для огэ

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

ДугаВсе формулы по теме окружности для огэ

Часть окружности, расположенная между двумя точками окружности

КругВсе формулы по теме окружности для огэ

Конечная часть плоскости, ограниченная окружностью

СекторВсе формулы по теме окружности для огэ

Часть круга, ограниченная двумя радиусами

СегментВсе формулы по теме окружности для огэ

Часть круга, ограниченная хордой

Правильный многоугольникВсе формулы по теме окружности для огэ

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Все формулы по теме окружности для огэ

Около любого правильного многоугольника можно описать окружность

Окружность
Все формулы по теме окружности для огэ

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

ДугаВсе формулы по теме окружности для огэ

Часть окружности, расположенная между двумя точками окружности

КругВсе формулы по теме окружности для огэ

Конечная часть плоскости, ограниченная окружностью

СекторВсе формулы по теме окружности для огэ

Часть круга, ограниченная двумя радиусами

СегментВсе формулы по теме окружности для огэ

Часть круга, ограниченная хордой

Правильный многоугольникВсе формулы по теме окружности для огэ

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Все формулы по теме окружности для огэ

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Все формулы по теме окружности для огэ

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

Числовая характеристикаРисунокФормула
Площадь кругаВсе формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

где R – радиус круга, D – диаметр круга

Площадь сектораВсе формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Площадь сегментаВсе формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Площадь круга
Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

где R – радиус круга, D – диаметр круга

Площадь сектораВсе формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Площадь сегментаВсе формулы по теме окружности для огэ

Все формулы по теме окружности для огэ,

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

Числовая характеристикаРисунокФормула
Длина окружностиВсе формулы по теме окружности для огэ

где R – радиус круга, D – диаметр круга

Длина дугиВсе формулы по теме окружности для огэ

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Длина окружности
Все формулы по теме окружности для огэ

где R – радиус круга, D – диаметр круга

Длина дугиВсе формулы по теме окружности для огэ

если величина угла α выражена в радианах

Все формулы по теме окружности для огэ,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

Все формулы по теме окружности для огэ

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы по теме окружности для огэ

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы по теме окружности для огэ

из которой вытекает равенство:

Все формулы по теме окружности для огэ

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы по теме окружности для огэ

из которой вытекает равенство:

Все формулы по теме окружности для огэ

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Все формулы по теме окружности для огэ

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы по теме окружности для огэ

из которой вытекает равенство:

Все формулы по теме окружности для огэ

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы по теме окружности для огэ

из которой вытекает равенство:

Все формулы по теме окружности для огэ

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы по теме окружности для огэ

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

Все формулы по теме окружности для огэ

В случае, когда величина α выражена в в радианах, получаем

Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности

Класс: 9

Ключевые слова: математика , ОГЭ

1. Углы

Все формулы по теме окружности для огэ

Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).

Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).

Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).

Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.

2. Медиана, биссектриса, высота

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.

3. Треугольник

Сумма углов в любом треугольнике 180˚.

Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.

Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).

Все формулы по теме окружности для огэ

Равнобедренный треугольник — треугольник, у которого равны две стороны.

Свойства равнобедренного треугольника:

  • в равнобедренном треугольнике углы при основании равны;
  • в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;

Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)

Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Три признака равенства треугольников

I признак по двум сторонам и углу между ними

II признак (по стороне и прилежащим углам)

III признак (по трем сторонам)

Признаки подобия треугольников

I признак по двум равным углам

II признак по двум пропорциональным сторонам и углу между ними

III признак по трем пропорциональным сторонам

Площади подобных фигур относятся как коэффициент подобия в квадрате.

Объемы подобных фигур относятся как коэффициент подобия в кубе.

Треугольник называется прямоугольным, если один из его углов прямой.

Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).

Свойства прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусов.

Катет, лежащий против угла в 30˚, равен половине гипотенузы.

Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.

Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².

Пифагоровы тройки:

Признаки равенства прямоугольных треугольников

  • По двум катетам.
  • По гипотенузе и катету.
  • По катету и прилежащему острому углу.
  • По катету и противолежащему острому углу.
  • По гипотенузе и острому углу.

Признаки подобия прямоугольных треугольников:

  • По острому углу.
  • По пропорциональности двух катетов.
  • По пропорциональности катета и гипотенузы.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.

Высота прямоугольного треугольника: h=ab/c или h =Все формулы по теме окружности для огэ (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).

В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=​с/2=m​c).

3. Четырехугольники

Сумма углов в любом четырехугольнике 360˚.

Параллелограмм

Все формулы по теме окружности для огэ

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.

У параллелограмма противолежащие стороны равны и противолежащие углы равны.

Сумма любых двух соседних углов параллелограмма равна 180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Каждая диагональ делит параллелограмм на два равных треугольника.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Все формулы по теме окружности для огэ

Ромбом называется параллелограмм, у которого все стороны равны.

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.

Квадрат.

Квадрат – это прямоугольник, у которого все стороны равны.

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями: Все формулы по теме окружности для огэ.

Трапеция

Все формулы по теме окружности для огэ

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Равнобокой называется трапеция, у которой боковые стороны равны.

У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.

Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

4. Окружность

Все формулы по теме окружности для огэ

Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.

Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.

Прямая, имеющая с окружностью две общие точки, называется секущей.

Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.

Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

Вписанный угол, опирающийся на диаметр равен 90˚.

Все вписанные углы, опирающиеся на одну и туже дугу равны.

Теорема косинусов:

Теорема синусов:

Все формулы по теме окружности для огэ

5. Формулы площадей

Поделиться или сохранить к себе: