Формулы для площадей четырехугольников |
Вывод формул для площадей четырехугольников |
Вывод формулы Брахмагупты для площади вписанного четырехугольника |
В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:
которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Формулы для площадей четырехугольников
Четырехугольник | Рисунок | Формула площади | Обозначения | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Прямоугольник | S = ab | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Параллелограмм | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Квадрат | S = a 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S = 4r 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ромб | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Трапеция | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S = m h | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Дельтоид | S = ab sin φ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный выпуклый четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вписанный четырёхугольник |
Прямоугольник | ||
Параллелограмм | ||
Квадрат | ||
S = a 2 где | ||
S = 4r 2 | ||
Ромб | ||
Трапеция | ||
Дельтоид | ||
где | ||
Произвольный выпуклый четырёхугольник | ||
Вписанный четырёхугольник | ||
Прямоугольник |
где
a и b – смежные стороны
где
d – диагональ,
φ – любой из четырёх углов между диагоналями
где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями
Формула получается из верхней формулы подстановкой d = 2R
где
a – сторона,
ha – высота, опущенная на эту сторону
где
a и b – смежные стороны,
φ – угол между ними
φ – любой из четырёх углов между ними
где
a – сторона квадрата
Получается из верхней формулы подстановкой d = 2R
где
a – сторона,
ha – высота, опущенная на эту сторону
где
a – сторона,
φ – любой из четырёх углов ромба
где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба
где
a и b – основания,
h – высота
φ – любой из четырёх углов между ними
где
a и b – основания,
c и d – боковые стороны ,
где
a и b – неравные стороны,
φ – угол между ними
где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .
где
a и b – неравные стороны,
r – радиус вписанной окружности
φ – любой из четырёх углов между ними
где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр
Формулу называют «Формула Брахмагупты»
Видео:Как находить площадь любой фигуры? Геометрия | МатематикаСкачать
Вывод формул для площадей четырехугольников
Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле
Доказательство . В соответствии с рисунком 1 справедливо равенство:
что и требовалось доказать.
Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле
где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).
Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому
что и требовалось доказать.
Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле
где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).
то, в силу утверждения 2, справедлива формула
что и требовалось доказать.
Утверждение 4 . Площадь ромба ромба можно найти по формуле
,
где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).
что и требовалось доказать.
Утверждение 5 . Площадь трапеции можно найти по формуле
,
где a и b – основания трапеции, а h – высота высота высота (рис.5).
Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому
что и требовалось доказать.
Утверждение 6 . Площадь трапеции трапеции можно найти по формуле
где a и b – основания, а c и d – боковые стороны трапеции ,
(рис.6).
Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):
,
что и требовалось доказать.
Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:
где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).
Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.
Если r – радиус вписанной в дельтоид окружности, то
Видео:Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать
Четырехугольники. Основные теоремы, формулы и свойства. Виртуальный справочник репетитра по математике
З десь ученики и репетиторы по математике и могут найти основные свойства и формулы площадей четырехугольников, изучаемых в школе по основной программе. Регулярно пользуюсь этими теоретическими сведениями на тематических и обзорных занятиях по геометрии (планиметрии), а также при подготовке к ЕГЭ по математкие. Все математические понятия и факты иллюстрированы с цветовыми выделениями главных особенностей изучаемого.
1) Площади четырехугольников
Площадь параллелограмма
произведение основания на высоту
пороизведение сторон на синус угла между ними
полупроизведение диагоналей на синус угла между ними
Площадь трапеции
произведение полусуммы оснований на высоту
произведение средней линии на высоту
полупроизведение диагоналей на синус угла между ними
Площадь произвольного четырехугольника
Площадь произвольного четырехугольника равна полупроизведению его диагоналей на синус угла между ними
2) Свойства параллелограмма
В параллелограмме:
противолежащие стороны и углы равны
диагонали пересекаются и в точке пересечения делятся пополам
3) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, то есть
3) Cредняя линия в трапеции
Теорема о средней линии: Средняя линия трапеции параллельна основаниям и равна их полусумме.
То есть и
4) Средняя линия в равнобедренной трапеции
Средняя линия в равнобедренной трапеции равна отрезку нижнего основания, соединяющему вершину основания с снованием проведенной к ней высоты.
То есть
5) Теорема с сдвиге диагонали в трапеции
Теорема: Если в трапеции через вершину В, как показано на рисунке слева , провести отрезок параллельный одной из диагоналей, то окажутся верными следующие факты:
трапеция — равнобедренная равнобедренный
6) Четыре замечательные точки в трапеции
Теорема: В любой трапеции точка пересечения диагоналей, точка пеерсечения продолжений боковых сторон и середины оснований лежат на одной прямой.
То есть точки M, N, K и P лежат на одной прямой
Комментарий репетитора по математкие: Знаний этих свойств по четырехугольникам вполне достаточно для решения задачи С4 на ЕГЭ, то есть ничего сверх этих фактов по четырехугольникам абитуриент знать не обязан. Однако сильным ученикам для решения сложных задач части С или олимпиадных геометрических задач, а также для качественной подготовки к экзамену по математике в МГУ необходимо расширить список. Я бы не советовал репетиторам ограничиваться только задачами на применение этих свойств, так как составителями ЕГЭ по математике закладывается проверка сразу нескольких навыков работы с теорией. В течении всего времени подготовки к ЕГЭ репетитору по математкие необходимо отбирать тренировочные задачи на одновременное использование этих свойств с другими планиметрическими фактами внутри одной задачи, ибо на экзамене может встретиться многоходовая комбинация.
Колпаков Александр Николаевич. Репетитор по математике.
Александр, конечно, есть множество карманных справочников, НО! Было бы здорово сделать для репетиторов по математике скачиваемые материалы в каком-нибудь удобном формате, а также для проработки отдельно задачи к таким шпаргалкам опять же от простого к сложному.
Я выкладывал на каких-то страницах с карточками-памятками готовые теоретические материалы — файлы в формате word, по крайней мере для планиметрии точно. Просмотрите соответствующие разделы сайта. На них ведут ссылки с главной страницы. Задумываю выделить репетиторам по математике для скачивания материалов отдельный раздел сайта. Все упирается в мою занятость реальными учениками. Иначе бы уже давно реализовал все замыслы.
В этой хорошей подборке, на мой взгляд, не достает сведений по углам, например, два внутренних угла параллелограмма, связанных одной стороной в сумме дают 180 градусов.
Принципиально ли в формуле площади через диагонали брать именно меньший угол между ними? Или можно любой?
Александр, если не затруднит, очень хотелось бы получить файлик world на почту или тыкнуть ссылкой на нее. За ранее очень благодарен за титанический труд.
Видео:Площади четырехугольников: трапеция, параллелограмм, ромб. Геометрия на клеточке. ОГЭСкачать
ЕГЭ формулы, шпаргалки — Элементарная геометрия. Четырехугольники.
Площадь прямоугольника (со сторонами a и b):
,
где a – сторона, – угол, h – высота, d1 и d2 – диагонали.
Связь между стороной и диагоналями:
,
где a и b — стороны, — угол, ha и hb — высоты, опущенные на стороны a и b, — угол между диагоналями d1 и d2.
Связь между стороной и диагоналями:
.
Трапеция (с основаниями a, b и высотой h):
Выпуклый четырехугольник.
Площадь выпуклого четырехугольника:
где d1 и d2 — диагонали, — угол между диагоналями.
Связь между сторонами и диагоналями: , где a, b, c, d — стороны, m — отрезок, соединяющий середины диагоналей.
Свойства четырехугольников:
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противоположных сторон равны: a + c = b + d.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы противоположных углов равны: .
Для вписанного четырехугольника справедливы формулы: ac + bd = d1d2;
Полный список всех формул, шпаргалок для ЕГЭ по математике тут: ЕГЭ математика — формулы, шпаргалки.
📺 Видео
ВСЯ ГЕОМЕТРИЯ 9 класса в одной задаче | Математика | TutorOnlineСкачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
Миникурс по геометрии. ЧетырехугольникиСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать
Лайфхак! Площади всех фигур #огэ #математика #shortsСкачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
9 класс. Геометрия. Площадь треугольника. Формулы для нахождения площади треугольника. Урок #3Скачать
ВИДЕОУРОК для 9 и 11 классов: Повторение ФОРМУЛ площадей четырехугольниковСкачать
9 класс. Математика. Подготовка к ОГЭ. Площадь четырехугольниковСкачать
9 класс, 15 урок, Решение треугольниковСкачать
Четырехугольники. Вебинар | МатематикаСкачать
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать