Вращение шара по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Вращение шара по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Вращение шара по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Вращение шара по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Вращение шара по окружности

Количество оборотов выражается следующей формулой:

Вращение шара по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Вращение шара по окружности

Видео:Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Вращение шара по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Вращение шара по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Вращение шара по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Вращение шара по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Вращение шара по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Вращение шара по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Вращение шара по окружности

Выражая угловую скорость через частоту, получим:

Вращение шара по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Вращение шара по окружности

Сравним две формулы:

Вращение шара по окружности

Преобразуем формулу линейной скорости и получим:

Вращение шара по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Вращение шара по окружности

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Вращение шара по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Вращение шара по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Вращение шара по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Вращение шара по окружности

Подставляем известные данные в формулу и вычисляем:

Вращение шара по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Вращение шара по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Вращение шара по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Вращение шара по окружности

Произведем сокращения и получим:

Вращение шара по окружности

Вращение шара по окружности

Вращение шара по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Вращательное движение тела в физике — виды, формулы и определения с примерами

Содержание:

Вращательное движение тела:

До сих пор мы изучали прямолинейное движение тел, хотя в природе и технике часто совершаются более сложные движения тел — криволинейные, когда траекторией тела является кривая линия. Любую кривую линию всегда можно представить как совокупность дуг окружностей разных радиусов (рис. 18). Вращение шара по окружности

Поэтому, изучив движение материальной точки по окружности, сможем в дальнейшем изучать и любые другие криволинейные движения. Кроме того, из всех возможных криволинейных движений в технике широко применяется вращательное движение деталей машин и механизмов, например вращение шестерён машин и станков, деталей, обрабатываемых на токарных станках, валов двигателей, колес машин, фрез, свёрл и т. п. Любая точка этих деталей движется по окружности. Эти две особенности и обусловили обязательное изучение движения по окружности, а именно — равномерное движение тела по окружности.

Движение материальной точки по круговой траектории с постоянной по значению, но изменяющейся по направлению скоростью, называют равномерным движением по окружности.

Предположим, что тело равномерно движется по окружности из точки А в точку В (рис. 19). Тогда пройденный им путь — это длина дуги Вращение шара по окружности

Вращение шара по окружности

где Вращение шара по окружности— скорость движения тела по окружности; Вращение шара по окружности— пройденный телом путь (длина дуги); Вращение шара по окружности— время движения тела.

Направление скорости проще всего определить на опыте.

Опыт:

К вращающемуся точильному кругу, прикоснемся железным стержнем. Увидим, что искры из-под стержня летят по касательной к окружности этого круга (рис. 20).

Вращение шара по окружности

Результат будет таким же в любой точке этого круга. Но каждая искра — это раскалённая частичка, оторвавшаяся от круга и летящая с такой же скоростью, какую она имела в последний момент движения вместе с кругом.

Вращение шара по окружности

Итак, скорость материальной точки при движении по окружности направлена по касательной к ней в любой точке круга (рис. 21), а с учётом представления кривой на рисунке 18 этот вывод можно распространить на любые криволинейные движения (рис. 22).

Вращение шара по окружности

Опыт:

Закрепим на горизонтальной оси О фанерный диск (рис. 23), на котором проведен радиус ОА. Напротив точки А поставим указатель В и будем медленно и равномерно вращать диск. Увидим, что точка А с каждым оборотом диска снова появляется напротив указателя В, т. е. совершает движение, повторяющееся через определенный интервал времени.

Движения, при которых определенные положения материальной точки повторяются через одинаковые интервалы времени, называют периодическими движениями.

Равномерное движение по окружности — это периодическое движение. Периодическое движение характеризуют такими величинами, как период обращения и частота обращения.

Период обращения — это интервал времени, в течение которого материальная точка совершает один оборот при равномерном движении по окружности.

Обозначается период обращения большой латинской буквой Т.

Если за время Вращение шара по окружностиматериальная точка при равномерном движении по окружности совершает N оборотов, то период обращения определяется формулой:

Вращение шара по окружности

Единицей периода обращения в СИ является одна секунда (1 с).

Если период обращения равняется 1 с, то материальная точка при равномерном движении по окружности осуществляет один оборот за 1 с.

Частота обращения определяется числом оборотов, которое материальная точка совершает за единицу времени при равномерном движении по окружности

Обозначается частота обращения малой латинской буквой Вращение шара по окружности.

* В научной и учебной литературе частоту обращения еще обозначают малой греческой буквой Вращение шара по окружности(ню).

Если за время Вращение шара по окружностиматериальная точка совершила N оборотов, то, чтобы определить частоту обращения Вращение шара по окружности, нужно N поделить на Вращение шара по окружности, т. е.:
Вращение шара по окружностиа так как Вращение шара по окружности= ТN , то Вращение шара по окружности.
Из последней формулы видно, что частота обращения и период обращения связаны обратно пропорциональной зависимостью, а для определения единицы частоты обращения нужно единицу разделить на единицу периода обращения, т. е. на секунду.

Единицей частоты обращения в СИ является единица, разделённая на секунду Вращение шара по окружности. Вращение шара по окружностиэто частота обращения, при котором за 1 с материальная точка совершает 1 полный оборот, двигаясь равномерно по окружности. В технике такую единицу иногда называют одним оборотом в секунду Вращение шара по окружности, часто применяют также единицу один оборот в минуту Вращение шара по окружности.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Движение точки по окружности

Движения, происходящие в природе и технике, могут отличаться по изменению значения скоростей и по изменению направления скоростей. Так, например, при движении точки вдоль прямой линии в одном направлении направление скорости не меняется, хотя ее значение может быть различным. В этом случае движение считается неравномерным.

Но движения могут быть и криволинейными, например, точки могут двигаться по окружностям. На рисунке 18 изображена траектория движения точек нити или ленты между круглыми барабанами. Такие траектории можно представить в виде отрезков прямых линий и окружностей разных размеров. Понятно, что такие движения могут быть и равномерными, каждая точка все время будет иметь одинаковую скорость по значению, хотя направление скорости от точки к точке траектории может меняться.

Вращение шара по окружностиВращение шара по окружности

Рассмотрим движение материальной точки по окружности, когда это движение равномерно, т. е. значение скорости остается постоянным (рис. 19). Точка, двигаясь по окружности радиуса R, за определенное время Вращение шара по окружностипереходит из точки А в точку В. При этом отрезок OA поворачивается на угол Вращение шара по окружности— угловое перемещение точки. Такое движение можно характеризовать угловой скоростью:

Вращение шара по окружности

где Вращение шара по окружности(греческая буква «омега») — угловая скорость; Вращение шара по окружности(греческая буква «фи») — угловое перемещение.

Угловое перемещение определяется в радианах (рад.). 1 радиан — это такое перемещение, когда траектория движения точки — длина дуги окружности АВ — равна длине радиуса R.

Единицей угловой скорости является радиан в секунду (рад/с).

1 рад/с равен угловой скорости такого равномерного движения по окружности, при котором за 1 с осуществляется угловое перемещение 1 рад.

При определении угловой скорости слово «рад» обычно не пишут, а просто обозначают 1/с (имеется в виду рад/с).

Движение точки по окружности (и вращение твердого тела) характеризуют также такие величины, как период и частота вращения.

Период вращения (Т) — это время, на протяжении которого точка (тело) совершает один полный оборот по окружности. Период вращения:

Вращение шара по окружности

где t — время вращения, N — количество выполненных оборотов.

Период вращения Т измеряется в секундах. Период равен 1 с, если точка (тело) осуществляет один оборот в секунду. Частота вращения (вращательная частота):

Вращение шара по окружности

где N — количество совершенных оборотов за время t .

Частота вращения измеряется в оборотах за секунду (об/с).

Частота вращения Вращение шара по окружности определяет количество оборотов точки (тела) вокруг центра (оси вращения) за 1 с.

Еще Архимед установил, что для всех окружностей любого радиуса отношение длины окружности к его диаметру является величиной постоянной. это число обозначили греческой буквой Вращение шара по окружности(«пи»).

Вращение шара по окружности

Вращение шара по окружности

Таким образом, длина окружности Вращение шара по окружности

За один оборот материальная точка осуществляет угловое перемещение 2 Вращение шара по окружностирад.

Движение по окружности характеризуется привычным для нас понятием скорости как пути, который проходит точка за единицу времени. В данном случае эта скорость называется линейной. Если учитывать, что за один оборот (время Т) точка проходит путь Вращение шара по окружностито линейная скорость равномерного движения точки по окружности Вращение шара по окружностиили Вращение шара по окружности

Вращение твердого тела

Твердые тела состоят из большого количества частичек. Абсолютно твердыми наукой считаются тела, расстояние между точками которых не изменяется во время явлений, которые с ними происходят. Однако следует иметь в виду, что абсолютно твердых тел в природе нет.

Как упоминалось в § 3, движения твердых тел бывают поступательные и вращательные. Твердые тела могут вращаться вокруг любых осей, в том числе и тех, которые проходят через их центры.

В случае а (рис. 20) ось вращения проходит через центр шара (например, вращаются колеса транспортных средств или Земля в своем суточном вращении вокруг оси). В случае в ось проходит через край шара. В случае в шар находится на определенном расстоянии от оси (например, Земля движется вокруг Солнца или Луна вокруг Земли). В некоторых случаях даже Землю и Луну можно считать материальными точками, а в некоторых случаях это сделать невозможно. Подумайте, в каких?

Вращение шара по окружности

Что же является наиболее характерным для вращательного движения твердых тел? Очевидно, что при этом все точки этих тел в своем движении описывают окружности, центры которых находятся на осях вращения.

Понятно также, что разные точки тел за одно и то же время проходят по своим траекториям разные расстояния — чем дальше от оси вращения лежат точки, тем больше эти расстояния. Но за одно и то же время угловое перемещение Вращение шара по окружностивсех точек одинаково. Следовательно, и угловая скорость Вращение шара по окружностидля всех точек данного тела также будет одинаковой.

Для характеристики вращательного движения твердых тел используют такие же понятия, что и для движения точки по окружности: период вращения Т — время одного полного вращения; вращательная частота (частота вращения) Вращение шара по окружности— количество полных вращений за единицу времени; угловая скорость со. Кроме основной единицы частоты вращения об/с, используют об/мин, об/ч и т. п.

Период вращения Земли вокруг- Солнца равен в среднем 365 суток, а период вращения Луны вокруг Земли в среднем 28 суток. Изучая физику, астрономию, вы узнаете, что небесные тела, например планеты Солнечной системы, движутся не по окружностям, а по так называемым эллипсам.

Динамика вращательного движения

При просмотре фильмов-боевиков вы могли наблюдать, что при резком вращении руля автомобиля машина опрокидывается. В цирке мотоциклисты катаются по поверхности стен.
Проведем такой опыт. Нальем воду в ведро и раскрутим его в вертикальной плоскости. При определенной скорости вращения вода не выливается из ведра.

Из приведенных выше примеров можно сделать заключение, что существует сила, которая опрокинет машину при резком повороте, удержит мотоциклиста на стене и не даст вылиться воде из ведра при вращении.
Откуда появляется эта сила? От чего зависит ее величина?
Для этого вспомним о возникновении центростремительной силы в теле при равномерном вращательном движении:

Вращение шара по окружности

По третьему закону Ньютона:

Вращение шара по окружности

и при вращении появляется также центробежная сила. Вращение шара по окружности
Вот эта центробежная сила опрокинет резко разворачивающуюся машину, удержит воду в ведре при вращении и т.д.

Вращение шара по окружности

На рисунке 4.12 показаны силы, действующие на тело, которое совершает вращательные движения по кругу радиусом Вращение шара по окружности. В точке 1, из-за того что центробежная сила Вращение шара по окружностинаправлена противоположно силе тяжести Вращение шара по окружности, вес тела уменьшается:

Вращение шара по окружности

В точке 3 сила тяжести тела и центробежная сила направлены вниз, т.е. в одном направлении. В этом случае вес тела растет:

Вращение шара по окружности

Центробежную силу нужно учитывать при вращении тела и в случаях поворота в ходе движения.
Кроме того, на поворотах дороги под воздействием центробежной силы наблюдается отклонение тела от вертикального положения. Чтобы это не приводило к авариям, велосипедисты или мотоциклисты должны двигаться с небольшим уклоном в сторону от центра вращения (рис. 4.13а).
Для уравновешивания этой силы специально для автомобилей на поворотах строят участки дороги с уклоном с одной стороны (рис. 4.13б). Для трамваев и поездов рельсы на поворотах дороги с внешней стороны круга делаются чуть выше.

Вращение шара по окружности

Пример

При движении по кругу тело опускается вниз. При каком радиусе круга тело не упадет с точки Вращение шара по окружности. Скорость тела в точке Вращение шара по окружностиравна 30 м/с.
Дано:

Вращение шара по окружности

Вращение шара по окружности

Вращение шара по окружности

Чтобы тело не упало из точки Вращение шара по окружностидолжно Вращение шара по окружностивыполняться следующее условие: Вращение шара по окружности
Вращение шара по окружности
Ответ: 90 м.

Кинематика вращательного движения

При криволинейном движении материальной точки ее мгновенная скорость направлена по касательной к траектории в данной точке.
Движение тела (МТ) по окружности является частным случаем криволинейного движения по траектории, лежащей в одной плоскости.

Одним из простейших и широко распространенных видов такого движения является движение по окружности с постоянной по модулю скоростью. Это такое движение, при котором тело (МТ) за любые равные промежутки времени описывает одинаковые дуги. Подчеркнем, что при подобном движении скорость точки постоянно меняет свое направление.

Для описания движения по окружности используется ряд физических величин. Рассмотрим некоторые из них.

Удобным параметром для определения положения материальной точки М, совершающей движение по окружности радиусом R с центром в начале координат, является угол поворота Вращение шара по окружности(рис. 25)

Вращение шара по окружности
радиус-вектора точки М. Он отсчитывается от оси Ох против хода часовой стрелки и связан с декартовыми координатами соотношениями:

Вращение шара по окружности

По теореме Пифагора можно найти, что координаты х и у материальной точки в декартовой системе координат удовлетворяют соотношению

Вращение шара по окружности
Скорость Вращение шара по окружностис которой материальная точка движется по окружности, называется линейной скоростью (рис. 26).

Вращение шара по окружности

Проходимый точкой путь s (длина дуги окружности) равен, как и для всякого равномерного движения, произведению модуля скорости v и промежутка времени движения Вращение шара по окружности

Вращение шара по окружности
Модуль угловой скорости Вращение шара по окружности— это отношение угла поворота Вращение шара по окружностик промежутку времени Вращение шара по окружностиза который этот поворот произошел:
Вращение шара по окружности
Угловая скорость Вращение шара по окружностисо является величиной векторной. Она направлена вдоль оси вращения материальной точки, и ее направление определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения конца буравчика, рукоятка которого вращается в том же направлении, что и тело (рис. 27).

Вращение шара по окружности

Единица угловой скорости в СИ — радиан в секунду Вращение шара по окружности

При движении по окружности с постоянной по модулю скоростью v угловая скорость Вращение шара по окружностиявляется величиной постоянной и ее модуль равен отношению угла поворота Вращение шара по окружностик промежутку времени Вращение шара по окружностиза который этот поворот произошел:

Вращение шара по окружности

Здесь n — частота вращения — физическая величина, численно равная числу оборотов N материальной точки в единицу времени:

Вращение шара по окружности
Единица частоты вращения в СИ — секунда в минус первой степени Вращение шара по окружностиВремя совершения одного оборота называется периодом вращения Т.

Вращение шара по окружности
В СИ период измеряется в секундах (1с).

При совершении полного оборота Вращение шара по окружностипериод определяется по формуле

Вращение шара по окружности
Модуль постоянной линейной скорости тела (МТ), движущегося по окружности, вычисляется по формуле

Вращение шара по окружности

Проекции скорости Вращение шара по окружности(см. рис. 25) с течением времени изменяются по закону
Вращение шара по окружности
Модуль угловой скорости определяется соотношением

Вращение шара по окружности
Следовательно, соотношение между модулями линейной и угловой скорости имеет вид
Вращение шара по окружности
Поскольку Вращение шара по окружности(докажите самостоятельно), где Вращение шара по окружности— угол поворота радиус-вектора в момент начала движения, то кинематический закон движения МТ но окружности имеет видВращение шара по окружности

При движении МТ по окружности с постоянной по модулю скоростью ее направление непрерывно изменяется и, следовательно, движение МТ происходит с ускорением, которое называется центростремительным Вращение шара по окружностиили нормальным Вращение шара по окружностиУскорение направлено по радиусу к центру окружности и характеризует быстроту изменения направления скорости Вращение шара по окружностис течением (см. рис. 26). Его модуль определяется формулой

Вращение шара по окружности

Нормальное ускорение Вращение шара по окружностив любой момент времени перпендикулярно скорости Вращение шара по окружности

Как и при прямолинейном равноускоренном движении, ускорение Вращение шара по окружностиназываемое тангенциальным (касательным), совпадает с направлением скорости Вращение шара по окружностиили направлено противоположно ей Вращение шара по окружностии поэтому изменяет только модуль скорости. Следовательно, при движении по окружности с непостоянной по модулю скоростью (например, математический маятник) или при любом криволинейном движении полное ускорение Вращение шара по окружностиможно представить в виде векторной суммы нормального ускорения Вращение шара по окружностии тангенциального ускорения Вращение шара по окружностинаправленного по касательной к окружности в данной точке (рис. 28):
Вращение шара по окружности

Вращение шара по окружности
Полное ускорение Вращение шара по окружностивсегда направлено в сторону вогнутости траектории (см. рис. 28).

Модуль полного ускорения находится по теореме Пифагора:

Вращение шара по окружности
где Вращение шара по окружности— нормальное ускорение, с которым точка двигалась бы по дуге
окружности радиусом r, заменяющей траекторию в окрестности рассматриваемой точки. Этот радиус r называют радиусом кривизны траектории.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Равномерное движение материальной точки по окружности
  • Колебательное движение
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Поступательное движение
  • Равномерное и неравномерное движение
  • Равномерное движение
  • Неравномерное движение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Отчего он ходит по кругу?Скачать

Отчего он ходит по кругу?

Вращательное движение

Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение. Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение.

  • Роль перемещения во вращательном движении играет угол;
  • Величина угла поворота за единицу времени — это угловая скорость;
  • Изменение угловой скорости за единицу времени — это угловое ускорение.

1. Равномерное вращательное движение

Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

Вращение шара по окружности

Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения — T.

Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
V = 6,28/1 = 6,28 м/с

2. Центробежное ускорение

В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением.

Составляющая вектора скорости, перпендикулярная радиусу вращения, является касательной к траектории движения и называется тангенциальной составляющей. Перпендикулярная ей компонента называется нормальной составляющей

Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0. Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости — aц.

Центробежное ускорение можно вычислить по формуле: aц = V 2 /R

Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

3. Центробежная сила

Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

При равномерном вращательном движении на вращающееся тело действует центробежная сила:

Если наш шарик весит 1 кг, то для удержания его на окружности понадобится центробежная сила:

Fц = 1·6,28 2 /1 = 39,4 Н

С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

Задача №1: расчитать, какую максимальную скорость может развить тело в повороте с радиусом 30 метров при коэффициенте трения 0,9, чтобы «вписаться» в этот поворот.

Сила трения должна уравновесить центробежную силу:

V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

Ответ: 58,5 км/ч

Обратите внимание, что скорость в повороте не зависит от массы тела!

Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты «легче» проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:

Вращение шара по окружности

В вертикальном направлении на тело действует сила тяжести Fg = mg, которая уравновешивается вертикальной составляющей нормальной силы Fнcosα:

Fнcosα = mg , отсюда: Fн = mg/cosα

Подставляем значение нормальной силы в исходную формулу:

Fц = Fнsinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

Т.о., угол наклона дорожного полотна:

α = arctg(Fц/mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

Опять обратите внимание, что в расчетах не участвует масса тела!

Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль «не вылетел» (трением пренебречь)?

α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42°

Ответ: 42°. Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

4. Градусы и радианы

Многие путаются в понимании угловых величин.

При вращательном движении основной единицей измерения углового перемещения является радиан.

  • 2π радиан = 360° — полная окружность
  • π радиан = 180° — половина окружности
  • π/2 радиан = 90° — четверть окружности

Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π. Например:

  • 45° = (45°/360°)·2π = π/4 радиан
  • 30° = (30°/360°)·2π = π/6 радиан

Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

Прямолинейное движениеВращательное движение
s — линейное перемещение
V — линейная скорость
a — линейное ускорение
V = Δs/Δt
a = ΔV/Δt
s = V0(t1 — t0) + sa(t1 — t0) 2
V1 2 — V0 2 = 2as
Θ — угловое перемещение
ω — угловая скорость
α — угловое ускорение
ω = ΔΘ/Δt
α = Δω/Δt
Θ = ω0(t1 — t0) + sα(t1 — t0) 2
ω1 2 — ω0 2 = 2αΘ

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Вращение шара по окружности

Код кнопки: Вращение шара по окружности
Политика конфиденциальности Об авторе

📸 Видео

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Построение недостающих проекции сквозного отверстия в сфереСкачать

Построение недостающих проекции сквозного отверстия в сфере

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Движение колеса без проскальзывания, качение | Олимпиадная физика, кинематика | 9 – 11 классСкачать

Движение колеса без проскальзывания, качение | Олимпиадная физика, кинематика | 9 – 11 класс

13. Вращение сферыСкачать

13. Вращение сферы

11 класс, 19 урок, Сфера и шарСкачать

11 класс, 19 урок, Сфера и шар

Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)Скачать

Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)

Бесконечное вращение объекта | BlenderСкачать

Бесконечное вращение объекта | Blender

Окружность — сфера — шарСкачать

Окружность — сфера — шар

СФЕРА с вырезомСкачать

СФЕРА с вырезом

Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

Сфера вращением окружностиСкачать

Сфера вращением окружности

Анимация вращения 3d шара в фотошопеСкачать

Анимация вращения 3d шара в фотошопе
Поделиться или сохранить к себе: