Вписанная окружность в прямоугольнике

Вписанная окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Вписанная окружность в прямоугольнике
    • Четырехугольник
      Вписанная окружность в прямоугольнике
    • Многоугольник
      Вписанная окружность в прямоугольнике

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Прямоугольник. Онлайн калькулятор

    С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

    Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

    Вписанная окружность в прямоугольнике

    Можно дать и другое определение прямоугольника.

    Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

    Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    Свойства прямоугольника

    Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

    • 1. Стороны прямоугольника являются его высотами.
    • 2. Все углы прямоугольника прямые.
    • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
    • 4. Диагонали прямоугольника равны.
    • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

    Длиной прямоугольника называется более длинная пара его сторон.

    Шириной прямоугольника называется более короткая пара его сторон.

    Видео:Три окружности в прямоугольнике.Скачать

    Три окружности в прямоугольнике.

    Диагональ прямоугольника

    Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

    Вписанная окружность в прямоугольнике

    На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

    Для вычисления длины диагонали воспользуемся теоремой Пифагора:

    Вписанная окружность в прямоугольнике
    Вписанная окружность в прямоугольнике.(1)

    Из равенства (1) найдем d:

    Вписанная окружность в прямоугольнике.(2)

    Пример 1. Стороны прямоугольника равны Вписанная окружность в прямоугольнике. Найти диагональ прямоугольника.

    Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Вписанная окружность в прямоугольникев (2), получим:

    Вписанная окружность в прямоугольнике

    Ответ: Вписанная окружность в прямоугольнике

    Видео:Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классыСкачать

    Окружность, вписанная в прямоугольный треугольник | Геометрия 8-9 классы

    Окружность, описанная около прямоугольника

    Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

    Вписанная окружность в прямоугольнике

    Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Формула радиуса окружности описанной около прямоугольника

    Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

    Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

    ( small R=frac )(3)

    Подставляя (3) в (2), получим:

    ( small R=frac<large sqrt> )(4)

    Пример 2. Стороны прямоугольника равны Вписанная окружность в прямоугольнике. Найти радиус окружности, описанной вокруг прямоугольника.

    Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Вписанная окружность в прямоугольникев (4), получим:

    Вписанная окружность в прямоугольнике
    Вписанная окружность в прямоугольнике

    Ответ: Вписанная окружность в прямоугольнике

    Видео:8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

    8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

    Периметр прямоугольника

    Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

    Периметр прямоугольника вычисляется формулой:

    Вписанная окружность в прямоугольнике(5)

    где ( small a ) и ( small b ) − стороны прямоугольника.

    Пример 3. Стороны прямоугольника равны Вписанная окружность в прямоугольнике. Найти периметр прямоугольника.

    Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Вписанная окружность в прямоугольникев (5), получим:

    Вписанная окружность в прямоугольнике

    Ответ: Вписанная окружность в прямоугольнике

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Формулы сторон прямоугольника через его диагональ и периметр

    Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

    Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

    Вписанная окружность в прямоугольнике(6)
    Вписанная окружность в прямоугольнике(7)

    Из формулы (7) найдем ( small b ) и подставим в (6):

    Вписанная окружность в прямоугольнике(8)
    Вписанная окружность в прямоугольнике(9)

    Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

    Вписанная окружность в прямоугольнике(10)

    Вычислим дискриминант квадратного уравнения (10):

    Вписанная окружность в прямоугольникеВписанная окружность в прямоугольнике(11)

    Сторона прямоугольника вычисляется из следующих формул:

    Вписанная окружность в прямоугольнике(12)

    После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

    Примечание. Легко можно доказать, что

    ( frac

    >d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

    Пример 4. Диагональ прямоугольника равна Вписанная окружность в прямоугольнике, а периметр равен Вписанная окружность в прямоугольнике. Найти стороны прямоугольника.

    Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Вписанная окружность в прямоугольнике, Вписанная окружность в прямоугольникев (11):

    Вписанная окружность в прямоугольнике

    Подставляя значения Вписанная окружность в прямоугольникеи Вписанная окружность в прямоугольникев первую формулу (12), получим:

    Вписанная окружность в прямоугольнике

    Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Вписанная окружность в прямоугольникеи Вписанная окружность в прямоугольникев формулу, получим:

    Вписанная окружность в прямоугольнике

    Ответ: Вписанная окружность в прямоугольнике, Вписанная окружность в прямоугольнике

    Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

    Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

    Признаки прямоугольника

    Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

    Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

    Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

    Видео:ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольникСкачать

    ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольник

    Вписанная окружность

    Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

    Вписанная окружность в прямоугольнике

    Теорема

    В любой треугольник можно вписать окружность.

    Доказательство

    Дано: произвольный Вписанная окружность в прямоугольникеАВС.

    Доказать: в Вписанная окружность в прямоугольникеАВС можно вписать окружность.

    Доказательство:

    1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

    Вписанная окружность в прямоугольнике

    2. Точка О равноудалена от сторон Вписанная окружность в прямоугольникеАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны Вписанная окружность в прямоугольникеАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в Вписанная окружность в прямоугольникеАВС. Теорема доказана.

    Замечание 1

    В треугольник можно вписать только одну окружность.

    Доказательство

    Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

    Замечание 2

    Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

    Доказательство

    На рисунке 2 мы видим, что Вписанная окружность в прямоугольникеАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: Вписанная окружность в прямоугольнике. Тогда, по свойству площадей, площадь треугольника Вписанная окружность в прямоугольникеАВС выражается формулой: Вписанная окружность в прямоугольнике, где Вписанная окружность в прямоугольнике— периметр Вписанная окружность в прямоугольникеАВС. Что и требовалось доказать.

    Замечание 3

    Не во всякий четырехугольник можно вписать окружность.

    Доказательство

    Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

    Вписанная окружность в прямоугольнике

    Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

    В любом описанном четырехугольнике суммы противоположных сторон равны.

    Доказательство

    Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

    Вписанная окружность в прямоугольнике

    На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = Вписанная окружность в прямоугольникеи ВС + АD = Вписанная окружность в прямоугольнике, следовательно, АВ + СD = ВС + АD.

    Верно и обратное утверждение:

    Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

    Доказательство

    Пусть в выпуклом четырехугольнике АВСD

    АВ + СD = ВС + АD. (1)

    Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

    Вписанная окружность в прямоугольнике

    Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

    Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

    Вписанная окружность в прямоугольнике

    Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

    АВ + С1D1 = ВС1 + AD1. (2)

    Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

    С1D1 + С1С + D1D = ВС + АDАВ.

    Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

    т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

    Поделись с друзьями в социальных сетях:

    📺 Видео

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

    Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

    Описанная и вписанная окружности четырехугольника - 8 класс геометрия

    Все окружности в №16 с нуля. Вписанные и центральные углы. Вписанный прямоугольник.Скачать

    Все окружности в №16 с нуля. Вписанные и центральные углы.  Вписанный прямоугольник.

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)

    Вписанный в окружность прямоугольный треугольник.Скачать

    Вписанный в окружность прямоугольный треугольник.

    РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

    РАДИУС вписанной окружности #математика #огэ #огэматематика #данир

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Вписанная окружностьСкачать

    Вписанная окружность
    Поделиться или сохранить к себе: