- Признаки параллельных прямых
- Свойства параллельных прямых
- Углы при параллельных прямых и секущей — виды и свойства
- Изучаемый геометрический объект
- Векторное представление
- Другие формы уравнений
- Взаимное расположение
- Две прямые
- Три прямые
- Секущая и углы
- Методы вычисления
- Пример решения задачи
- Геометрия. Урок 2. Углы
- Понятие угла
- Виды углов:
- Биссектриса угла
- Углы, образованные при пересечении двух прямых
- Углы, образованные при пересечении двух прямых секущей
- Сумма углов многоугольника
- Примеры решений заданий из ОГЭ
- 🎥 Видео
Видео:УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать
Признаки параллельных прямых
1. Если две прямые параллельны третьей прямой, то они являются параллельными:
2. Если две прямые перпендикулярны третьей прямой, то они параллельны:
Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.
3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:
Если ∠1 + ∠2 = 180°, то a || b.
4. Если соответственные углы равны, то прямые параллельны:
5. Если внутренние накрест лежащие углы равны, то прямые параллельны:
Видео:Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021Скачать
Свойства параллельных прямых
Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.
1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:
Если a || b, то ∠1 + ∠2 = 180°.
2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:
3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:
Следующее свойство является частным случаем для каждого предыдущего:
4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:
Пятое свойство — это аксиома параллельности прямых:
5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Углы при параллельных прямых и секущей — виды и свойства
Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Изучаемый геометрический объект
Прежде чем рассматривать углы, которые образуются в результате различного взаимного расположения прямых на плоскости, следует подробно изучить сам геометрический объект. Любая прямая линия представляет собой набор точек в пространстве любой мерности, каждая из которых может быть получена из предыдущей путем ее переноса на вектор, имеющий конкретное направление.
Рассматриваемый объект является одномерным, то есть он имеет лишь один единственный размер, который отличен от нуля. Прямая — это бесконечная линия, любые две точки на которой отсекают отрезок определенной длины.
Векторное представление
Определение прямой говорит о том, что для универсального ее математического описания следует воспользоваться понятием вектора. Под ним в математике подразумевают направленный отрезок, имеющий начало и конец. В двумерном пространстве любой вектор представляется набором двух чисел, например, a (a1, a2). Построить его можно следующим образом:
- Необходимо начало вектора расположить в точке (0, 0) (пересечение осей абсцисс и ординат в декартовой системе).
- Конец направленного отрезка помещается в точку с координатами (a1, a2).
- Начало и конец соединяются так, что стрелка (направление) указывается в точку (a1, a2).
Самостоятельно вектор не может задать прямую, поскольку существует бесконечное множество объектов a (a1, a2), которые получаются с помощью параллельного переноса их по всей плоскости. Необходима фиксированная точка, чтобы привязать начало направленного отрезка. Так образуется прямая линия. Ее векторное уравнение может быть записано в следующем виде:
A (x, y) = A0 (x0, y0) + alfa*(a1, a2).
Здесь A (x, y) — произвольная точка линии, A0 (x0, y0) — фиксированная точка на ней, (a1, a2) — координаты вектора, который называется направляющим, alfa — любое рациональное число, которое показывает, на какую долю направленного отрезка (a1, a2) следует переместить A0 (x0, y0), чтобы попасть в A (x, y).
Другие формы уравнений
Векторное уравнение прямой является неявным по отношению к координатам x и y. Для одних задач его удобно использовать, для других же следует применять иные формы записи. Одной из них является параметрическая. Ее можно записать так:
Этой формой удобно пользоваться для определения конкретных координат x и y. Если из этой системы равенств выразить параметр alfa, то можно получить симметричное уравнение прямой:
Наконец, если представить это выражение таким образом, чтобы y был выражен, как функция от x, то получится общее представление прямой линии в двумерной системе координат:
y = a2/a1*x + (y0-a2/a1*x0).
Эта формула известна любому школьнику, поскольку основное внимание при изучении геометрических свойств рассматриваемого одномерного объекта в школах уделяется именно ей. Зная, как перевести один вид уравнения прямой в другой, можно выполнять соответствующие преобразования для решения конкретных задач.
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Взаимное расположение
Рассматривая вопрос параллельных углов, следует изучить все возможные варианты расположения на плоскости прямых линий. Количество ситуаций зависит от числа присутствующих геометрических объектов, а также от размерности координатной системы.
Две прямые
На плоскости существует три разных варианта расположения двух прямых относительно друг друга. К ним относятся следующие:
- Совпадение. Два объекта могут иметь разные направляющие вектора и фиксированные точки, но при этом будут накладываться друг на друга. Чтобы это проверить, необходимо взять произвольные две точки, которые принадлежат одной линии, и подставить их координаты в уравнение для другой. Если равенство в обоих случаях будет верным, то прямые являются идентичными.
- Параллельность. В этом случае ни одна точка одной прямой не принадлежит другой. Однозначным и достаточным доказательством параллельности является возможность выразить направляющий вектор одного объекта, через направленный отрезок другого путем его умножения на какое-либо рациональное число.
- Пересечение. Обе прямые имеют одну общую точку. Чтобы ее найти, следует решить систему уравнений. Для этого удобно воспользоваться общей формулой выражения для прямых.
Три прямые
Когда на плоскости имеются три прямых, то количество вариантов их взаимного расположения возрастает. Возможные следующие случаи:
- Пересечение в одной точке.
- Параллельность двух, которые пересекаются третьей.
- Все три параллельны друг другу.
- Каждая пересекает каждую так, что образуются три точки пересечения.
Для определения всех этих ситуаций следует проводить геометрический анализ с применением уравнений разных форм представления прямых. Случай номер 2 является наиболее интересным, поскольку в результате такого взаимного расположения образуется набор специальных углов.
Видео:Все виды углов при параллельных прямых и секущей #математика #огэ #огэматематика #семенСкачать
Секущая и углы
В школьном курсе геометрии изучение прямых и секущей имеет особый интерес. В результате такого расположения одномерных объектов получаются несколько углов, обладающих специальными свойствами. Полученные выводы используются для решения не только теоретических, но и практических вопросов.
Выделяют три типа углов, образующихся при пересечении секущей двух параллельных линий:
- накрест лежащие;
- односторонние;
- соответственные.
Один из накрест лежащих углов расположен во внутренней области параллельных линий с одной стороны от секущей, второй же лежит во внешней области с другой стороны. Поскольку секущая пересекает каждую параллельную, образуется четыре пары рассматриваемых углов, которые лежат друг относительно друга накрест. Попарно эти углы равны. Две пары из них являются тупыми, а две — острыми. Особый случай составляют вертикальные прямые углы.
Односторонние — это такие углы, которые бывают между параллельными линиями и только с одной стороны от секущей (отсюда их название). Причем один из них образован одной параллельной прямой, а другой относится к другой параллельной линии. Они в общем случае не равны друг другу, поскольку один является острым, а другой тупым. Однако если секущая перпендикулярна параллельным прямым, то односторонние углы будут составлять 90 градусов. Их важное свойство состоит в том, что в сумме всегда получается 180 градусов. В рассматриваемом расположении одномерных объектов существует лишь две пары этих углов.
Соответственные углы при параллельных прямых лежат по одну сторону от секущей, но по разные стороны от каждой параллельной прямой. Они также являются смежными. Их существует четыре пары, которые попарно одинаковы. Их сумма в каждой паре всегда равна 180 градусам.
Следует запомнить, что соответственные углы всегда лежат по одну сторону от секущей. В указанном расположении прямых можно найти еще четыре пары смежных углов, которые, однако, будут располагаться по разные стороны от секущей и по одну сторону от параллельной линии. Они соответствующими не являются.
Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
Методы вычисления
Зная значение любого из накрест лежащих, односторонних и соответственных углов, можно найти величины всех остальных, воспользовавшись их свойствами. Для проведения вычислений проще всего воспользоваться векторной формой представления прямых.
Пусть существует две параллельных линии, которые заданы следующим образом:
- A (x, y) = A0 (x1, y1) + k*(a1, a2);
- B (x, y) = B0 (x2, y2) + w*(b1, b2).
Секущая задается векторным уравнением: C (x, y) = С0 (x3, y3) + l*(c1, c2). Для расчета угла пересечения любых двух прямых необязательно искать их общую точку, достаточно воспользоваться свойствами умножения направляющих векторов. Они могут перемножаться двумя различными способами:
Пусть следует найти угол пересечения прямых A и C. Для скалярного произведения можно записать: ((a1, a2)*(c1, c2)) = a1*c1 + a2*c2 = ((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5*cos (teta). Откуда получается неизвестный угол teta:
teta = arccos ((a1*c1 + a2*c2)/(((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5)).
Другой способ определения teta заключается в применении векторного произведения. Получается следующее выражение: [(a1, a2)*(c1, c2)] = a1*c2 — a2*c1 = ((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5*sin (teta). Тогда teta может быть вычислен по формуле:
teta = arcsin ((a1*c2 — a2*c1)/(((a1)^2+(a2)^2)^0,5*((c1)^2+(c2)^2)^0,5)).
Вычислить соответствующие функции арксинуса или арккосинуса можно с использованием инженерного калькулятора. Как только известен угол пересечения секущей и параллельной прямых, остальные углы находятся с помощью добавления или вычитания его из 180 градусов, согласно их свойствам.
Видео:Пары углов в геометрииСкачать
Пример решения задачи
Для наглядной демонстрации использования методов вычисления всех типов углов при параллельных прямых полезно решить задачу. Пусть одна из параллельных линий имеет уравнение: y = -2*x + 1. А ее секущая выражается равенством y = x. Необходимо найти значение углов для каждой пары трех типов.
Прежде чем перейти к использованию скалярного или векторного произведения, следует найти направляющие отрезки для каждой из прямой. Сначала каждую из них нужно записать в параметрической форме:
k = (y-1)/1 и k = (x-0)/-0.5 ==>
Откуда получаются координаты направляющего вектора: (-0,5, 1). Проведение аналогичных преобразований для второй линии приводит к ее направляющему отрезку с координатами (1, 1).
Воспользовавшись формулой для угла teta через скалярное произведение, можно получить следующий результат:
teta = arccos ((-0,5*1 + 1*1)/(((-0,5)^2+(1)^2)^0,5*((1)^2+(1)^2)^0,5)) = 71,6 градуса.
Тогда накрест лежащие углы составят 71,6 градуса, а односторонние и соответствующие будут равны 71,6 и 108,4 градуса (180−71,6).
Знание уравнений прямых и умение производить операции умножения векторов позволяет вычислять любые типы углов, которые образуются при пересечении параллельных прямых секущей линией. Подобные расчеты можно проводить не только в двумерном, но также в трехмерном пространстве.
Видео:Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрияСкачать
Геометрия. Урок 2. Углы
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Углы
Видео:ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать
Понятие угла
Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.
Стороны угла – лучи, которые образуют угол.
Вершина угла – точка, из которой выходят лучи.
Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.
Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B или ∠ B O A , но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .
Величину угла измеряют в градусах. ∠ A O B = 24 ° .
Видео:Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать
Виды углов:
Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать
Биссектриса угла
Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.
Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.
∠ A O D = ∠ B O D = ∠ A O B 2
Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .
Видео:Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать
Углы, образованные при пересечении двух прямых
Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.
Свойство: вертикальные углы равны.
Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.
Свойство: сумма смежных углов равна 180 ° .
( 1 ) и ( 3 )
( 2 ) и ( 4 )
называются вертикальными .
По свойству вертикальных углов:
∠ C O D = ∠ A O B
∠ B O D = ∠ A O C
( 1 ) и ( 2 )
( 2 ) и ( 3 )
( 3 ) и ( 4 )
( 4 ) и ( 1 )
называются смежными .
По свойству смежных углов:
∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °
Видео:Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.Скачать
Углы, образованные при пересечении двух прямых секущей
Прямая, пересекающая две заданные прямые, называется секущей этих прямых.
Существует пять видов углов, которые образуются при пересечении двух прямых секущей.
( 1 ) и ( 5 )
( 2 ) и ( 6 )
( 3 ) и ( 7 )
( 4 ) и ( 8 )
называются соответственными .
(Легко запомнить: они соответствуют друг другу, похожи друг на друга).
( 3 ) и ( 5 )
( 4 ) и ( 6 )
называются внутренними односторонними .
(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).
( 1 ) и ( 7 )
( 2 ) и ( 8 )
называются внешними односторонними .
(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).
( 3 ) и ( 6 )
( 4 ) и ( 5 )
называются внутренними накрест лежащими .
(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).
( 1 ) и ( 8 )
( 2 ) и ( 7 )
называются внешними накрест лежащими .
(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).
Если прямые, которые пересекает секущая, параллельны , то углы имеют следующие свойства:
- Соответственные углы равны.
- Внутренние накрест лежащие углы равны.
- Внешние накрест лежащие углы равны.
- Сумма внутренних односторонних углов равна 180 ° .
- Сумма внешних односторонних углов равна 180 ° .
Видео:Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать
Сумма углов многоугольника
Сумма углов произвольного n -угольника вычисляется по формуле:
S n = 180 ° ⋅ ( n − 2 )
где n – это количество углов в n -угольнике.
Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.
Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °
Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °
Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °
Так можно продолжать до бесконечности.
Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.
На рисунках изображены примеры правильных многоугольников:
Чтобы найти величину угла правильного n -угольника , необходимо сумму углов этого многоугольника разделить на количество углов.
α n = 180 ° ⋅ ( n − 2 ) n
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с углами
🎥 Видео
Углы при параллельных прямых и секущей. ОГЭ/ЕГЭ (часть 1)Скачать
все виды углов при параллельных прямых (накрест лежащие, соответственные, односторонние)Скачать
Углы при параллельных прямых и секущей | ЕГЭ 2023 Профильная математикаСкачать
Углы при параллельных и секущей #математика #огэматематика #огэ #данирСкачать