- Пуск асинхронного двигателя переключением со звезды на треугольник
- Подключение звезда и треугольник — в чем разница
- Что представляет собой соединение обмоток звездой?
- Что представляет собой соединение обмоток в треугольник?
- Разница между соединением обмотки в треугольник и звезду
- Преимущества соединения обмоток в звезду
- Оборудование с возможностью переключения типа соединения со звезды на треугольник
- Подключение электродвигателя по схеме звезда и треугольник
- Пуск “Звезда – Треугольник”
- Плавный пуск электродвигателя
- Поэтому рекомендуется заменять схемы пуска “звезда-треугольник” на плавные электронные пускатели
- Схема переключения звезда треугольник
- Схема звезда – треугольник
- Звезда и треугольник принцип подключения. Особенности и работа
- Схемы
- Схема звезды
- Схема треугольника
- Фазные и линейные величины
- Особенности схем
- Для этого можно применить некоторые методы:
- Достоинства схем
- Соединение по схеме звезды имеются важные преимущества:
- Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях
- Обмотки генератора и трансформатора
- Лампы освещения
- Похожие темы:
- Пуск двигателя звезда треугольник – Help for engineer | Cхемы, принцип действия, формулы и расчет
- Описание принципа работы пуска двигателя “звездой”, с переходом на “треугольник”
- Звезда-Треугольник. Переключение двигателя со звезды на треугольник
- Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
- Электрические схемы
- Спецификация оборудования фирмы (Германия)
- Описание и свойства пуска звезда-треугольник асинхронного электродвигателя
- Порядок работы
- Схема соединения двигателя двойная звезда треугольник
- 19.1 Двухскоростные асинхронные двигатели различных скоростей
- Схемы подключения
- Переключение скоростей с помощью переключателя
- Переключение скоростей с помощью контакторов
- 19.2 Двухскоростные двигатели с подключением Даландера или с переключением полюсов
- Электродвигатель Даландера
- 19.3. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения
- Двухскоростной трехфазный асинхронный двигатель со спецификацией на одно напряжение
- Двухскоростной асинхронный электродвигатель
- Соединение по схеме Даландера
- Две отдельные обмотки
- Однофазные двигатели
- Коммутационные устройства для двигателей переменного тока
- Защитные выключатели двигателя для односкоростных двигателей без термоконтакта
- Защитные выключатели двигателя для двухскоростных двигателей без термоконтакта
- Устройства защиты для всех двигателей с термоконтактами
- Зачем нужна схема “Звезда – Треугольник”?
- Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
- Зачем нужна схема “Звезда – Треугольник”?
- Схемы “Звезда” и “Треугольник”
- Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
- 220/380 В
- 380/660 В
- Звезда / Треугольник: работа схемы
- Реализация силовой части схемы
- Реализация части управления
- Временные диаграммы работы схемы “Звезда-Треугольник”
- Реальный пример схемы
- Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
- Особенность работы в “Звезде”
- Видео
- Скачать
- Видео
Видео:Реверс с переключением со звезды на треугольник. + Принципиальная схемаСкачать
Пуск асинхронного двигателя переключением со звезды на треугольник
Кроме реостатного и прямого способов пуска асинхронных двигателей существует другой распространенный способ – переключением со звезды на треугольник.
Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется.
Затем переключают на рабочую схему соединения треугольник, причем при при переключении нужно учитывать пару нюансов.
Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание.
Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. В общем, нужно четко скорректировать время переключения. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.
Смысл этого способа в том что, при соединении обмоток статора звездой, фазное напряжение в них понижается в 1,73 раз.
В такое же количество раз уменьшается и фазный ток, который протекает в обмотках статора.
При соединении обмоток статора треугольником фазное напряжение равно линейному, а фазный ток в 1,73 раза меньше линейного. Получается, что соединяя обмотки звездой, мы уменьшаем линейный ток в 3 раза.
Чтобы не запутаться в цифрах, давайте рассмотрим пример.
Допустим, рабочей схемой обмотки асинхронного двигателя является треугольник, а линейное напряжение питающей сети 380 В. Сопротивление обмотки статора Z=20 Ом. Подключив обмотки в момент пуска звездой, уменьшим напряжение и ток в фазах.
Ток в фазах равен линейному току и равен
После разгона двигателя, переключаем со звезды на треугольник и получаем уже другие значения напряжений и токов.
Как видите линейный ток при соединении треугольником больше в 3 раза линейного тока при соединении звездой.
Данный способ запуска асинхронного двигателя применяется в тех случаях, когда присутствует небольшая нагрузка, либо когда двигатель работает на холостом ходу. Это связано с тем, что при уменьшении фазного напряжения в 1,73 раза, согласно формуле для пускового момента которая предоставлена ниже, момент уменьшается в три раза, а этого недостаточно, чтобы совершить пуск с нагрузкой на валу.
Где m – количество фаз, U – фазное напряжение обмотки статора,f – частота тока питающей сети, r1,r2,x1,x2-параметры схемы замещения асинхронного двигателя,p – число пар полюсов.
Рекомендуем прочесть статью – торможение асинхронного двигателя.
1 1 1 1 1 1 1 1 1 1 4.14 (65 Голоса)
Видео:Описание схемы переключения электродвигателя со звезды на треугольник.Скачать
Подключение звезда и треугольник — в чем разница
Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.
Что представляет собой соединение обмоток звездой?
Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой.
Отсюда выходит и понятие — нулевая точка.
Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С.
Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.
Что представляет собой соединение обмоток в треугольник?
Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей.
Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.
При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В.
Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.
Разница между соединением обмотки в треугольник и звезду
Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.
Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.
Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок.
Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент.
Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.
Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.
Преимущества соединения обмоток в звезду
Основные преимущества соединения обмоток в звезду заключаются в следующем:
- Понижения мощности оборудования с целью повышения надежности.
- Устойчивый режим работы.
- Для электрического привода такое соединение дает возможность плавного пуска.
Некоторое электрическое оборудование, которое не предназначены для работы на других способах соединения, имеет внутренне соединение концов обмоток. На клеммник выводится лишь три вывода, которые представляют собой начало обмоток. Такое оборудование легче в подключении и может монтироваться в отсутствии грамотных специалистов.
Основными преимуществами соединения обмоток в треугольник являются:
- Повышения мощности оборудования.
- Меньшие пусковые токи.
- Большой вращающийся момент.
- Увеличенные тяговые свойства.
Оборудование с возможностью переключения типа соединения со звезды на треугольник
Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.
В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник.
После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду.
Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.
Посмотрите так-же интересное видео на эту тему:
Видео:Реверс с переключением звезда-треугольник!Скачать
Подключение электродвигателя по схеме звезда и треугольник
Схемы подключения электродвигателя. Звезда, треугольник, звезда – треугольник.
Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.
На практике применяются основные способы подключения к сети трёхфазных электродвигателей: “подключение звездой” и “подключение треугольником”.
При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).
При соединении трёхфазного электродвигателя по схеме подключения “треугольником” обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).
Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.
В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда – треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».
Еще вариант схемы управления двигателем
Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.
После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.
При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.
Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.
(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в “треугольник” шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)
На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.
Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.
Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные “Пусковые реле времени” , реле “старт-дельта” и др., но назначение у них одно и тоже:
РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T (Чехия), TRS2D (Чехия), 1SVR630210R3300 (ABB), 80 series (Finder) и другие.
Типовая схема с пусковым реле времени (реле “звезда/треугольник”) для управления запуском трехфазного асинхронного двигателя:
Вывод: Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме “звезда” на пониженных оборотах, далее переключаться на “треугольник”.
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.
Видео:Реверс электродвигателя с последующим переключением со "звезды"на "треугольник2Скачать
Пуск “Звезда – Треугольник”
– на первом этапе пуска обмотки двигателя, ротор которого еще неподвижен, коммутируются на питающую сеть таким образом, чтобы получить конфигурацию “Звезда”;
– затем, через небольшой временной интервал, автоматически производится переключение обмоток в конфигурацию “треугольник”.
Это наиболее часто применяемый способ снижения пусковых токов. При пуске в положении «звезда», у двигателя, специально используемого для таких пусков, ток на треть ниже, чем при пуске путем прямого включения общепромышленного двигателя. Такой метод относительно дешев, прост и надежен.
Для механизмов с небольшим моментом инерции, например погружных насосов, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик.
Поэтому масса рабочего колеса насоса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до номинальной скорости об/мин. требуется не более пары десятков периодов напряжения сети.
Это означает также, что насос при отключении конфигурации “звезда” и перед переходом к “треугольнику” (переключении тока) очень быстро, практически сразу же, останавливается.
Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока.
При переключении со “звезды” на “треугольник” механизм быстро останавливается, ЭДС вращения исчезает и во второй раз должен запускаться напрямую.
Из диаграммы на рисунке видно, что на втором этапе значительного сокращения амплитуды пускового тока уже не происходит. Уменьшается лишь длительность этой перегрузки. Поэтому можно заключить, что пуск “Звезда-треугольник” неэффективен для механизмов с малыми моментами инерции.
Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих соответственно более продолжительным моментом инерции.
У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока.
Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме “треугольник” приводит к его перегреву (вспоминаем курс “Электрические машины” и “ТОЭ”, циркуляцию паразитной третьей и кратных ей гармоник внутри “треугольника” никому еще отменить не удалось) и, следовательно, сокращает срок службы.
Установки, содержащие погружные насосы с электродвигателями, включаемыми по этому методу, часто бывают дороже, чем с общепромышленными, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).
Плавный пуск электродвигателя
Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления тиристорными или симисторными сборками, включаемыми последовательно со статорными обмотками.
Электронный прибор УПП содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры, и силовой блок с встречно-параллельно включенными тиристорами/симисторами. С его помощью пусковой ток ограничивают, как правило, величиной, в 2–3 раза превышающей номинальный ток.
Наличие значительного момента инерции в процессе пуска может привести к увеличению теплообразования в электродвигателе и, тем самым, к снижению его срока службы.
Поэтому рекомендуется заменять схемы пуска “звезда-треугольник” на плавные электронные пускатели
Тем более, что технически эта задача не представляет никакой сложности и асинхронный двигатель менять не нужно! При проведении такой замены, рекомендуется соблюдать в первую очередь “Правила облаштування електроустановок”приведенные здесь времена ускорения/ замедления для плавного пуска.
В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 50%. Однако при нормальных условиях эксплуатации для электродвигателей, которыми оснащают насосы ведущие фирмы, этого не требуется .
При плавном пуске электродвигателя тиристорный силовой блок обеспечивает подачу тока несинусоидальной формы и создает высшие гармоники. В связи с очень коротким временем ускорения/торможения с практической точки зрения (и в нормах, касающихся высших гармоник) это не имеет продолжительного отрицательного влияния на питающую сеть.
Однако может вносить помехи в работу контроллеров. Для исключения влияния помех желательна установка противопомеховых фильтров** на входе устройства плавного пуска.
Как показано, устройство плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме прямого присоединения к питающей сети. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска.
** этому вопросу вскоре будет посвящен отдельный раздел, хотя вопрос сам по себе дискуссионный!
Видео:Как работает силовая часть Звезда - ТреугольникСкачать
Схема переключения звезда треугольник
Паспортные данные, приведенные на шильдике трехфазного асинхронного электродвигателя (АД) содержат все важные эксплуатационные технические данные машины, среди которых обязательно указывается и номинальный рабочий ток.
Два его значения, указанные через дробь означают потребляемый ток двигателя при схемах соединения его статорных обмоток: треугольником (имеет большее значение) и звездой.
Включение и пуск АД с обмотками, включенными по схеме треугольник сопровождается очень высокими пусковыми токами, которые могут быть причинами падения напряжения электросети, что, в свою очередь может вызвать различные неисправности электрооборудования, питаемого этой-же электросетью.
Для минимизации нагрузочных стартовых токов АД и во избежание подобных последствий представляется рациональным используемая для двигателей большой мощности практика пуска АД с соединением обмоток в звезду с последующим переключением на схему треугольник.
Схема звезда – треугольник
Данная схема реализована на релейно-контактной логике, в ее состав входят два магнитных пускателя К2, К3 и реле времени, совмещенное с контактором К1. Пуск АД производится при помощи магнитного пускателя К3, коммутирующего его обмотки в звезду.
Далее, по окончанию определенного промежутка времени, достаточного для выхода двигателя на номинальную частоту вращения и снижения пускового тока до номинального значения происходит срабатывание реле К1.
Как видно из схемы, сработка реле отключит разомкнет питающую цепь контактора К3 и замкнет цепь питания К2, коммутирующего обмотки АД в треугольник, вызвав его сработку. Таким образом, обмотки работающего двигателя окажутся включенными по схеме треугольник.
По сути, снижение пускового тока двигателя предложенным здесь способом реализуется включением его статорных обмоток при пуске на пониженное напряжение 220 В – звездой, с последующим переключением обмоток на рабочее напряжение 380 В – треугольником.
Обратите внимание, что данный способ снижения пусковых токов может быть использован для электродвигателей с вариантом рабочего напряжения 380/660 В (указывается на шильдике). Подключении обмоток АД, на табличке которого указано рабочее напряжение 220/380 В в треугольник вызовет его выход из строя.
Двигатель попросту сгорит, так как при подключении обмоток в треугольник окажется запитанным повышенным напряжением: его рабочее фазное фазное напряжение составляет 220 В, а линейное 380 В.
Переключение схемы обмоток может быть осуществлено не только управляющим сигналом реле времени. В качестве контролируемой величины может быть потребляемый ток; тогда вместо реле времени в схеме должно использоваться токовое реле.
Видео:Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать
Звезда и треугольник принцип подключения. Особенности и работа
Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).
Схемы
Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.
Схема звезды
Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z.
Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется.
Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.
Схема треугольника
При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.
В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.
Фазные и линейные величины
В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.
При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс, I cа.
Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.
В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.
Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.
Особенности схем
Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.
Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать.
При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов.
Электродвигатель будет работать с малой скоростью, которая меньше номинальной.
Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.
Для этого можно применить некоторые методы:
- Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
- Изменить вид соединения обмоток ротора электродвигателя.
В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность.
Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник».
Этот процесс переключения в промышленных условиях научились автоматизировать.
В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.
Достоинства схем
Соединение по схеме звезды имеются важные преимущества:
- Плавный пуск электрического мотора.
- Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
- Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
- При эксплуатации корпус электродвигателя не перегреется.
Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя.
При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.
При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.
Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.
Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях
Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.
Обмотки генератора и трансформатора
При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.
При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.
Лампы освещения
При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.
Похожие темы:
Видео:#016. Звезда-треугольник. Полная сборка схемы.Скачать
Пуск двигателя звезда треугольник – Help for engineer | Cхемы, принцип действия, формулы и расчет
Для того чтобы осуществить пуск звезда-треугольник нам потребуется:
1. 3-х полюсный автоматический выключатель QF1, с номинальным током, который зависит от мощности электродвигателя (выбор автомата см. здесь) |
2. Контакторы с доп. контактами в количестве 3 шт. (KM1, KM2, KM3) |
3. Кнопки 2 шт.: красная SB1 с нормально замкнутым контактом, черная SB2 – с нормально разомкнутым контактом |
4. Тепловое реле (если оно не предусмотрено в комплекте с автоматическим выключателем) |
5. Асинхронный трёхфазный электродвигатель М1 |
6. Клемма с предохранителем, которая устанавливается в цепь управления |
7. Реле времени KT1 |
Необходимость применения данной схемы пуска асинхронного электродвигателя вызвана высокими пусковыми токами. Для снижения этих самых токов, применяется пуск звезда-треугольник. Фактически, запуск двигателя происходит по схеме “звезда”, для которой в начальный момент токи низкие.
По истечению времени, заданному на реле KT1, происходит переключение в схему “треугольник”, в которой стартовые токи были бы больше.
Рисунок 1 – Схема пуска звезда-треугольник
Один из вариантов временной диаграммы реле KT1 для реализации вышеприведенной схемы:
Рисунок 2 – Временная диаграмма реле времени
Описание принципа работы пуска двигателя “звездой”, с переходом на “треугольник”
После нажатия кнопки “Start” SB2, запитывается катушка контактора KM1, в результате чего, замыкаются силовые контакты KM1 и доп. контактом КМ1.1 реализуется самоподхват кнопки пуска. Так же подаётся напряжение на реле времени KТ1, и замыкается контактор KM3.
Таким образом, происходит запуск двигателя по схеме “звезда”. А по истечении времени реле t1 контакт KТ1.1 мгновенно разомкнётся, пройдет задержка времени t2 в 50 мс, и замкнется контакт KТ1.2.
В следствии, сработает контактор KM2, который осуществляет переключение на “треугольник”.
Контакты НЗ (нормально замкнутые) KM2.1 и KM3.1 существуют для предотвращения одновременного включения контакторов KM1 и KM2.
Чтобы защитить двигатель от перегрузки, в силовой цепи должно быть установлено тепловое реле. Как мы можем видеть на схеме, оно уже включено в автоматический выключатель, и в случае чрезмерной нагрузки, теплушка разомкнёт силовую цепь и цепь управления через контакт QF1.1.
Рисунок 3 – Наглядный пример соединения обмоток в звезду
Рисунок 4 – Наглядный пример соединения обмоток в треугольник
Н – начало обмотки; |
К – конец обмотки. |
Видео:Как работает пусковой переключатель со звезды на треугольникСкачать
Звезда-Треугольник. Переключение двигателя со звезды на треугольник
Переключение двигателя со звезды на треугольник применяют для защиты электрических цепей от перегрузок. В основном переключают со звезды на треугольник мощные трехфазные асинхронные двигатели от 30-50 кВт, и высокооборотные
3000 об/мин, иногда 1500 об/мин.
Известно, что в момент запуска электродвигателя его ток увеличивается до 7 раз. Асинхронный двигатель с короткозамкнутым ротором напоминает трансформатор с замкнутой накоротко вторичной обмоткой.
Если двигатель соединен в звезду то на каждую его обмотку подается напряжение 220 Вольт, а если двигатель соединен в треугольник, то на каждую его обмотку приходиться напряжение 380 Вольт. Здесь в действие вступает закон Ома «I=U/R» чем выше напряжение, тем выше ток, а сопротивление не изменяется.
Проще говоря, при подключении в треугольник (380) ток будет выше, чем при подключении в звезду(220).
Когда электродвигатель разгоняется и набирает полные обороты, картина полностью меняется. Дело в том что двигатель имеет мощность которая не зависит от того подключен он в звезду или на треугольник. Мощность двигателя зависит в большей степени от железа и сечения провода. Здесь действует другой закон электротехники «W=I*U»
Мощность равна сила тока, умноженная на напряжение, то есть чем выше напряжение, тем ниже ток. При подключении в треугольник(380), ток будет ниже, чем в звезду (220).
Прейдем к практике
В двигателе концы обмоток выведены на «клеммник» таким образом что в зависимости от того каким образом поставить перемычки получится подключение в звезду или в треугольник как это показано на рисунке. Такая схема обычно на рисована на крышке.
Для того чтобы производить переключения со звезды на треугольник, мы вместо перемычек будем использовать контакты магнитных пускателей.
Рассмотрим схему силовую часть, показана жирными линиями.
Магнитный пускатель Р1 служит для включения и отключения двигателя. Контакты магнитного пускателя Р2 работают как перемычки для включения асинхронного двигателя в треугольник.
Обратите внимания, провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе, главное не перепутать.
Повторю еще раз это самое главное в схеме КОНТАКТЫ Р2 ВЫПОЛНЯЮТ РОЛЬ ПЕРЕМЫЧЕК ДЛЯ ПОДКЛЮЧЕНИЯ В ТРЕУГОЛЬНИК.
Магнитный пускатель Р3 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.
Рассмотрим схему управления, тонкими линиями.
При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель Р1 он срабатывает и на него подается напряжение через блок контакт теперь кнопку можно отпустить.
Далее напряжение подается на реле времени РТ, оно отсчитывает установленное время.
Также напряжение через замкнутый контакт реле времени Р1 подается на магнитный пускатель Р3 и двигатель запускается в «звезду».
Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается.
Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок контакт магнитного пускателя Р3, а от туда на катушку магнитного пускателя Р2. И электродвигатель включается в треугольник.
Кстати на схеме не показано, но пускатель Р3 следует также подключать через нормально-замкнутый блок контакт пускателя Р2, для защиты от одновременного включения пускателей.
Магнитные пускатели Р2 и Р3 лучше взять сдвоенные с механической блокировкой одновременного включения.
Кнопкой «СТОП» схема отключается, последовательно с этой кнопкой можно подключит «концевики», «аварийники», и так далее.
Если в сети напряжение 380/220, то двигатель следует брать 660/380
Видео:Пуск электродвигателя, без пускового тока, звезда, треугольник, схема запуска, видео, энергомагСкачать
Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
С помощью снижения пускового момента и ограничения пускового тока используют метод пуска асинхронного двигателя переключение «звезда – треугольник». В первый момент пуска, напряжение к статорным обмоткам подключается по схеме «звезда» (Y). Как только двигатель разгоняется, его питание включается по схеме «треугольник» (∆).
Некоторые трехфазные двигатели на низкое напряжение с мощностью выше 5 кВт рассчитывают на напряжение 400 В при включении по схеме «треугольник» (∆) или на 690 В при включении по схеме «звезда» (Y). Такая схема включения дает возможность производить пуск двигателя при меньшем напряжении.
При пуске двигателя по схеме «звезда – треугольник» удается уменьшить пусковой ток, до 1/3 от тока прямого пуска от сети.
Пуск по схеме «звезда – треугольник» особенно подходит для механизмов с большими маховыми массами, когда нагрузка набрасывается уже после разгона двигателя до номинальной скорости.
Недостатки пуска асинхронного двигателя переключением «звезда – треугольник»
При пуске двигателя переключением «звезда – треугольник» происходит также снижение пускового момента, приблизительно на 33%.
Данный метод можно использовать только для трехфазных асинхронных двигателей, которые имеют возможность подключения по схеме «треугольник».
В таком варианте существует опасность переключения на «треугольник» при слишком низкой частоте вращения, что вызовет рост тока до такого же уровня, что и ток при «прямом» пуске DOL.
Во время переключения со «звезды» на «треугольник» асинхронный электродвигатель может быстро снизить скорость вращения, для увеличения которой также потребуется резкое увеличение тока.
На рисунке показана схема запуска двигателя с помощью пускателей KM1, KM2, KM3. Пускатель KM1,КМ2 включает электродвигатель по схеме «звезда».
Через время, отведенное на запуск и выход двигателя на 50% номинальной скорости, отключается пускатель КМ2 и включается КМ3, переключая двигатель на «треугольник».
Пусковой момент и ток при пуске переключением «звезда – треугольник» значительно ниже, чем при прямом пуске.
Сравнение способа прямого пуска DOL и пуска с переключением «звезда – треугольник»
В данных диаграммах показаны пусковые токи для насоса, с трехфазным асинхронным двигателем мощностью 7,5 кВт методом прямого пуска (DOL) и пуска переключением «звезда – треугольник», соответственно. На рисунке видно, что способ прямого пуска DOL отличается большими пусковыми токами, но который через некоторое время уменьшается и становится постоянным.
Способ пуска переключением «звезда – треугольник» отличается меньшими низким пусковыми токами. Однако, в момент запуска при переходе от «звезды» к «треугольнику» происходят скачки токов. Во время пуска по схеме «звезда», через (t = 0,3 с), величина тока снижается.
Однако, во время переключения со «звезды» на «треугольнику», через время t = 1,7 с, величина тока достигает уровня пускового тока при прямом пуске.
Более того, скачок тока может стать ещё больше, так как во время переключения на двигатель не подаётся напряжение и двигатель теряет скорость перед подачей полного напряжения.
Видео:Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.Скачать
Электрические схемы
Режим работы звезда-треугольник, нереверсивный (1 фидер).
Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа.
В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при переключении нужно учитывать пару нюансов.
Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание.
Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.
Спецификация оборудования фирмы (Германия)
1 | Автоматич.выключ. MS116-16.0 16 кА с регулир. тепловой защитой | 1SAM250000R1011 | 1 |
2 | Боковые доп. |
контакты 1НО+1НЗ HK1-11 для автоматов типа MS116
Описание и свойства пуска звезда-треугольник асинхронного электродвигателя
Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа.
В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при переключении нужно учитывать пару нюансов.
Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание.
Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.
При запуске:
- бросок пускового тока снижен до одной трети от его величины при обычном пуске
- крутящий момент электродвигателя снижен до одной трети или даже меньше от его величины при обычном пуске. При пуске переключением со «звезды» на «треугольник» в общем случае наблюдаются переходные токи.
В начальный момент процесса запуска (соединение типа «звезда»)до момента переключения на «треугольник» крутящий момент сопротивления рабочей машины, независимо от скорости вращения, должен оставаться меньшим, чем крутящий момент электродвигателя, собранного в «звезду».
Подобный режим идеально подходит для двигателей, пускающихся в отсутствии нагрузки:
- механические станки,
- центробежные компрессоры,
- деревообрабатывающие станки.
Чтобы предотвратить большой бросок тока в момент переключения со «звезды» на «треугольник», электродвигатель должен развить частоту вращения 80-85% от номинальной.
Номинальное рабочее напряжение обмоток электродвигателя при соединении их в «треугольник» должно быть равным напряжению силовой цепи.
Пример:
Электродвигатель для сети 400 В, пускаемый переключением со «звезды» на «треугольник», должен быть рассчитан на напряжение 400 В при соединении его обмоток в «треугольник». Обычно это обозначается как «электродвигатель на 400/690 В». Обмотки электродвигателя должны иметь 6 отдельных выводов.
Порядок работы
1й этап – подключение «звезды»
Нажмите кнопку «Пуск» цепи управления для замыкания контактора «звезды» KM2. После чего замыкается линейный контактор KM1, и электродвигатель запускается. При этом начинается отсчёт заданного времени пуска (обычно от 6 до 10 с).
2й этап – переключение со «звезды» на «треугольник»
По истечении заданного времени размыкается контактор звезды KM2.
3й этап – подключение «треугольника»
Между моментами размыкания контактора «звезды» и замыкания контактора «треугольника», при помощи реле времени CT-SDS, задаётся время переключения (задержки) в 50 мс. Этим достигается отсутствие перекрытия цепей «звезды» и «треугольника».
Примечание.
При использовании в качестве контакторов «треугольника» и «звезды» контакторов AF или контакторов A в качестве контактора «звезды», а AF контактора «треугольника», нет необходимости применять реле времени, задающего время переключения (задержки), т.е.
TE5S или аналогичное. Достаточно реле времени, задающего длительность подключения «звезды» при пуске. Необходимая электрическая блокировка между контакторами «звезды» и «треугольника» осуществляется при помощи устройства VE 5 или вспомогательными контактами.
Однако в этом случае, при переключении контактора в разомкнутое состояние, перерыв в подаче напряжения может достигать 95 мс: необходимо проверить допустимость подобного режима, т.е. уменьшения скорости вращения электродвигателя при пуске, для практических условий.
Видео:запуск со звезды на треугольникСкачать
Схема соединения двигателя двойная звезда треугольник
Видео:Реверсивная схема управления двигателем на пакетном переключателе без контакторов (пускателей)Скачать
19.1 Двухскоростные асинхронные двигатели различных скоростей
Асинхронные трехфазные двигатели могут быть сконструированы более, чем на одну скорость, либо реализованные с различными обмотками, отличающимися числом полюсов, либо только с одной обмоткой, но построенной таким образом, что может подключаться внешне с различным числом полюсов. По этой причине некоторые виды трехфазных асинхронных двигателей с различными скоростями называют также двигатели с переключаемыми полюсами.
На рисунке 19.1 схематически представлены разнообразные типы обмоток и также их подключение, которые в настоящее время наиболее часто употребляются в конструкции двигателей различных скоростей, причем второй является наиболее часто используемым из всех.
Рисунок 19.1 – Системы соединения трехфазных асинхронных двигателей с различными скоростями
Этот тип двигателей имеет короткозамкнутый ротор и в основном применяется в работе станков и вентиляторов, и, что касается видов конструкции, представленных на рисунке 19.1, их главными характеристиками являются следующие:
- Двигатели с двумя независимыми обмотками. У этих двигателей две скорости и они сконструированы таким образом, что каждая обмотка взаимодействует внутренне с различным количеством полюсов и в зависимости от того, какая обмотка подключена к сети, двигатель будет вращаться с различным числом оборотов. В этом типе двигателей обычно обе обмотки включаются соединением в звезду и наиболее частые сочетания полюсов это: 6/2, 6/4, 8/2, 8/6, 12/2 и 12/4.
- Двигатели с одной обмоткой с подключением Даландера. Эти двухскоростные двигатели сконструированы с обычной трехфазной обмоткой, но соединенной внутри таким образом, что в зависимости то того, какие внешние потребители подключены в сеть, в двигателе будут происходить переключения с одного на другое количество полюсов, но их соотношение всегда будет 2 к 1; таким образом, у двигателя будут две роторные скорости, одна в два раза превышающая другую. Как показано на рисунке 19.1, подключение обмоток осуществляется треугольником или звездой для меньшей скорости и двойной звездой для большей, наиболее частые сочетания полюсов это: 4/2, 8/4 и 12/6.
- Двигатели с обмоткой Даландера и другой независимой обмоткой. При помощи этого типа двигателя достигаются три различные скорости, две с обмоткой подключения Даландера и третья с независимой обмоткой, конструкция которой различное количество полюсов, отличное от двух полярностей, полученных с первой. Наиболее часто используемые подключения представлены на рисунке 19.1, и наиболее часто встречающиеся сочетания полюсов: 6/4/2, 8/4/2, 8/6/4, 12/4/2, 12/6/4, 12/8/4, 16/12/8 и 16/8/4.
- Двигатели с двумя обмотками Даланлера. При помощи двигателей этого типа добиваются четырех скоростей, две с каждой обмотки, которые будут предназначены для полярностей отличных друг от друга, при наиболее часто использующихся сочетаниях: 12/8/6/4 и 12/6/4/2.
Видео:#001."Звезда" или "Треугольник"?Скачать
Схемы подключения
Кто немного не в курсе, как подключаются к трехфазной сети асинхронные электродвигатели – настоятельно рекомендую ознакомиться с моей статьёй Подключение двигателя через магнитный контактор . Я предполагаю, что читатель знает, как включается электродвигатель, зачем и какая нужна защита двигателя, поэтому в этой статье я эти вопросы опускаю.
В теории всё просто, а на практике приходится поломать голову.
Очевидно, что включение обмоток двигателя Даландера можно реализовать двумя путями – через переключатель и через контакторы.
Переключение скоростей с помощью переключателя
Рассмотрим сначала схему попроще – через переключатель типа ПКП-25-2. Такие принципиальные схемы мне встречались чаще всего в советской технике (примеры будут во второй части статьи).
Переключатель должен иметь три положения, одно из которых (среднее) соответствует выключенному двигателю. Про устройство переключателя – чуть позже.
Крестиками на пунктирах положения переключателя SA1 отмечены замкнутые состояния контактов. То есть, в положении 1
питание от L1, L2, L3 подается на треугольник (выводы U1, V1, W1). Выводы U2, V2, W2 остаются не подключенными. Двигатель вращается на первой, пониженной скорости.
При переключении SA1 в положение 2
выводы U1, V1, W1 замыкаются друг с другом, а питание подается на U2, V2, W2.
Переключение скоростей с помощью контакторов
При запуске с помощью контакторов схема будет выглядеть аналогично:
Внимание! Не путайте эту схему со схемой «Звезда-Треугольник»! Это другая схема!
Здесь на первую скорость двигатель включает контактор КМ1, на вторую – КМ2. Очевидно, что физически КМ2 должен состоять из двух контакторов, поскольку необходимо замыкание сразу пяти силовых контактов.
Видео:Подключение электродвигателя 380 на 220ВСкачать
19.2 Двухскоростные двигатели с подключением Даландера или с переключением полюсов
Наиболее применяемый вид асинхронных трехфазных двигателей с различными скоростями (можно сказать, что почти единственный применяемый в настоящее время) это двигатель с олной обмоткой с подключением Даландера и именно поэтому этот двигатель будет детально описан. На рисунке 19.2 показана обмотка трехскоростного асинхронного двигателя с подключением Даландера, где представлены, как внутренние подключения, так и присоединения с клеммной колодкой к сети, в двух рабочих позициях. Этот двигатель предназначен для работы с четырьмя полюсами, когда соединен в треугольник и два полюса, когда соединяется в двойную звезду в соответствии с представленной на рисунке фазы обмотки U1 – V1.
Рисунок 19.2 – Внутренние связи, в треугольник и двойную звезду, обмотки двигателя Даландера, с 4 и 2 полюсами
Как показано на рисунке 19.2 при запуске на меньшей скорости достаточно применить напряжение сети шторок клеммных соединений, при осуществлении треугольного подключения между тремя фазами внутри двигателя. И наоборот, для большой скорости должны быть выполнены две операции: сначала необходимо короткозамкнуть U1, V1 и W1, а затем применить напряжение сети U2, V2 и W2 в клеммном соединении. Вывод, полученный на основе вышеизложенного: для автоматического запуска двигателя с подключением Даландера необходимы три контактора.
Также на рисунке 19.2 можно увидеть, что когда двигатель подключается на маленькую скорость, образовывается двойное количество полюсов из-за того, что все статоры одной фазы соединены последовательно, в то время, как для большей скорости статоры каждой фазы соединяются по половине параллельно, таким образом получая половину количества полюсов по сравнению с предыдущим описанием.
Перейдем к описанию схем контроля и защиты наиболее часто применяемых для работы двигателей с подключением Даландера, и представленным на рисунках 19.3 и 19.4. Первый это простой запуск на любой из двух скоростей и второй это тот же тип запуска, но с двумя необходимыми цепямидля того, чтобы в каждой из своих двух скоростей двигатель мог бы запускаться в обоих направлениях без различия (одинаково).
Видео:Запуск двигателя по схеме "ЗВЕЗДА/ТРЕУГОЛЬНИК"Скачать
Электродвигатель Даландера
Идея двигателя Даландера в двух вариантах подключения. У «обычного» асинхронного трехфазного двигателя подключенного на «треугольник» три обмотки. У двигателя Даландера каждая обмотка разделена на две одинаковые.В первом варианте (медленном) двигатель работает как обычный асинхронный трехфазный двигатель. Для включения второго варианта работы происходит перекоммутация через коммутационный контактор, что преобразует схему «треугольник» в две «звезды». У двигателя увеличивается мощность и количество оборотов (скорость вращения).
Другие способы изменения скорости вращения двигателя — установка частотного преобразователя, использование двигателя с фазным ротором и двигатели с двумя комплектами обмоток с разным количеством полюсов.
Видео:#012. Режим переключения "Звезда"-"Треугольник". Часть 1.Скачать
19.3. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения
Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть:
- Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
- Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
- Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
- Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
- Предохранитель F5, для защиты цепей контроля.
- Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.
Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:
- а) запуск и остановка на маленькой скорости (PV).
- Запуск путем нажатия на S1.
- Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
- Автопитание через (К1, 13–14).
- Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
- Остановка путем нажатия на S0.
- б) запуск и остановка на большой скорости (GV).
- Запуск путем нажатия на S2.
- Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
- Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
- Автопитание через (К2, 13–14).
- Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
- Остановка путем нажатия на S0.
Видео:запуск приточной установки переключение с звезды на треугольникСкачать
Двухскоростной трехфазный асинхронный двигатель со спецификацией на одно напряжение
- изменяющееся количество полюсов двигателя согласно схеме Даландера (скорость вращения 1:2),
- изменяющееся количество полюсов двигателя с двумя отдельными обмотками (скорость вращения варьируется).
В отличии от односкоростных двигателей, двухскоростные двигатели предназначены для одной величины оперативного напряжения.
Напряжение сети и номинальное напряжение двигателя должны совпадать.
Что касается обозначения клемм, было установлено, что последовательность цифр, предшествующих клеммным буквам указывает число оборотов. Клеммы 1U, 1V и 1W всегда соответствуют низкой скорости, а клеммы 2U, 2V и 2W соответствуют более высокой скорости.
На рисунках 5–8 показано, каким образом обмотки должны быть соединены между собой и где токоведущие проводники ограничиваются в каждом конкретном случае.
Видео:Определение начала и конца обмоток трех фазного асинхронного двигателя, звезда ,треугольникСкачать
Двухскоростной асинхронный электродвигатель
Обмотки двухскоростного двигателя выглядят таким образом:
При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в “треугольник” на пониженную скорость.
А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две “звезды” (YY), и скорость будет в 2 раза выше.
Что будет, если обмотки вершин треугольника U1, V1, W1 и середин сторон U2, V2, W2 поменять местами? Я думаю, ничего не изменится, тут дело только в названиях. Хотя, я не пробовал. Кто знает – напишите в комментариях к статье.
Видео:Переход двигателя со звезды на треугольник.Скачать
Соединение по схеме Даландера
Чтобы запустить машину на низкой скорости вращения, блок питания подключается к клеммам 1U, 1V и 1W. Другие клеммы (2U, 2V, 2W) не подключаются (рис. 5). Чтобы использовать более высокую скорость, блок питания подключается к клеммам 2U, 2V и 2W.
Рисунок 5 – Обмотка Даландера для низкой скорости
Важно: Клеммы 1U, 1V и 1W должны быть соединены между собой в этом случае. Неспособность обеспечить этой перемычки (соединение звездой) приведет к разрушению обмоток (рис. 6).
Рисунок 6 – Обмотка Даландера для высокой скорости
В системах с контакторным управлением замыкатель звезда всегда должен быть включен перед сетевым контактором высокой скорости!
Видео:Как соединить обмотки электродвигателя в треугольник и звездуСкачать
Две отдельные обмотки
В этом случае источник питания подключен к клеммам 1U, 1V и 1W для низкой скорости, клеммы 2U, 2V и 2W остаются неподключенными (рис. 7). Для получения более высокой скорости, блок питания должен быть подключен к клеммам 2U, 2V и 2W.
Рисунок 7–8 – Соединение двух отдельных обмоток на низкую и высокую скорости
Соединение звездой ( перемычка ) не должно использоваться в этом случае.
Несоблюдение этого правила может привести к разрушению обмоток.
Сравнивая способы соединения двигателей по схеме Даландера, и узлов с отдельными обмотками, становится ясно, что разница между схемами должна быть внимательно отмечена при выборе коммутационных устройств.
Устройство переключения для двигателя Даландера никогда не должно быть использовано двигателем с двумя обмотками, и наоборот!
Смена фаз производится для реверса двигателя. Если изменяющий полюс выключатель ( переключатель полюса ) используется, рекомендуется произвести обмен фазы перед устройством переключения, так как изменение фазы на двигателе повлечет перенастройку 2х2 клемм, т. е. риск спутать проводники в этом случае будет значительно выше.
Однофазные двигатели
Однофазные двигатели предназначены для одно- или многоскоростных операций, а также контроля бесступенчатого изменения числа оборотов.
Клеммная коробка двигателя с обозначениями и соединениями для обмоток и конденсаторов изображена на рис. 9. Эти двигатели рассчитаны на работу с операционным напряжением в сети 230 В. Подключен ли двигатель между фазой и нейтралью в сети 400 В или между двух фаз 230 В не имеет значения. Кроме того, не принципиально, какой вывод будет использован при соединении фазы с нейтралью. Направление вращения будет тем же.
Рисунок 9 – Клеммная коробка двигателя с обозначениями
Смена направления вращения может быть достигнута путем изменения вспомогательной по отношению к основной обмотки. Это включает в себя переподключение цепей перемычек в клеммной коробке. Начиная с перемычки между U1 и Z1 и между С1 и Z2, которые предусмотрены в клеммной коробке для определения направления вращения. Скорость может быть выбрана присвоением питания соответствующим клеммам.
1. Низкая скорость
На рисунке 10 показано, что основная обмотка HS подключена последовательно со вспомогательной обмоткой HIS. Конденсатор С подключен параллельно вспомогательной обмотке.
Коммутационные устройства для двигателей переменного тока
Функции переключающих устройств:
- Питание и обесточивание двигателей вентиляторов.
- Защита двигателя от перегрузок и разрушений. Устройства, выполняющие эту функцию, называются защитные выключатели двигателя или защитные комбинированные переключатели.
Защитные выключатели двигателя для односкоростных двигателей без термоконтакта
Защитный выключатель двигателя может управлять односкоростным трехфазным двигателем. Он включает в себя переключение и отключение механизма. Отключение механизма (перегрузка по току или биметаллические реле) реагирует на входной ток двигателя и прерывает подачу питания, когда потребление тока начинает превышать номинальный ток двигателя.
Номинальный ток двигателя на соответствующем рабочем напряжении является решающим фактором для выбора защитного выключателя!
Номинальный ток должен находиться в пределах диапазона уставок защиты переключателя таким образом, чтобы последние точно доходили до номинального тока двигателя. Защитное отключение не должно срабатывать, если ток двигателя не превышен. С другой стороны, двигатель должен быть выключен (после определенной задержки), когда потребление тока возрастает выше заданного значения защитного выключателя. Задержка времени на отключение становится короче с увеличением величины тока; она составляет примерно 5 секунд при превышении тока в 6 раз от установленного значения.
Из вышеизложенного следует, что измеренный ток принимается в качестве меры температуры двигателя. Тем не менее, это справедливо только до тех пор, пока температура охлаждающей жидкости двигателя остается ниже порога + 40°C. Если температура охлаждающей жидкости поднимается выше + 40°C, электродвигатель может быть разрушен, даже если его номинальный ток не превышен, просто потому, что тепло, генерируемое внутри, не может быть достаточно быстро рассеяно. Защита двигателя реагирует только на нагрузки двигателя. Ток является причиной увеличения тепла.
Защитные выключатели двигателя для двухскоростных двигателей без термоконтакта
Двухскоростные двигатели переключаются при помощи комбинированных защитных переключателей. Последние отличаются от простых защитных выключателей тем, что они содержат два механизма переключающих операций (перегрузки по току или биметаллические реле), а также переключатель оборотов. Тем не менее, принцип работы такой же, как у защитного выключателя для односкоростных машин.
Устройства защиты для всех двигателей с термоконтактами
Для действительно эффективной защиты двигателя, должно быть принято во внимание влияние системы охлаждения. Это достигается путем измерения температуры непосредственно в месте, где она может повредить двигателю, то есть в пределах обмотки.
Обмотки изоляции бывают разных классов и не должны перегреваться сверх предельной температуры, указанной для каждого класса (рис. 12).
Для измерения температуры применяется датчик температуры (термоконтакт), который действует как преобразователь, встроенный в обмотку. Температура в обмотках электродвигателя надежно определяется датчиком. Он состоит из очень малого биметаллической коммутатора, который разрывает электрическую цепь управления незадолго до того, как температура обмотки достигает предела для данного класса изоляции. Чтобы воспользоваться этой функцией, необходимо применять коммутационное устройство, оборудованное соответствующим образом.
Эти устройства также называют устройствами защиты для всех двигателей с термоконтактами. Они доступны для односкоростных электродвигателей с обмотками Даландера или для двигателей с двумя раздельными обмотками.
Рисунок 12 – Пределы температур для изоляционных материалов
Действие устройства защиты характеризуется тем, что двигатель обесточивается сразу после срабатывания теплового контакта, разрывая электрическую цепь. Однако двигатель не будет автоматически запускаться повторно, если цепь управления закрывается тепловым контактом. Чтобы повторно запустить двигатель, ручной переключатель должен быть установлен в 0 , а затем, через Е (это дает начальный импульс) в положение 1 или 2 в зависимости от желаемой скорости.
Некоторые устройства защиты двигателей содержат дополнительные контакты для сервопривода и порт для подключения контакт создающих компонентов (например, термостата, гигростата, таймера и др.). Такие переключатели могут использоваться для питания и обесточивания электродвигателей через контакт создающие компоненты вручную на заранее заданной скорости. Двигатель выключается, когда управляющий контакт открывается и возвращается в работу автоматически, когда он закрывается.
Дополнительные контакты позволяют запустить сервопривод (позиционирование) двигателя по часовой стрелке или против часовой стрелки независимо от двигателя вентилятора.
Устройство защиты двигателя с биметаллическим реле, установленное на номинальный ток, может обслуживать только один подключенный двигатель, а устройства защиты для всех двигателей с термоконтактами поддерживает подключение нескольких двигателей. Следует отметить, что совокупность этих двигателей не должна превышать предельную мощность устройства защиты. Кроме того, двигатели, подключенные параллельно должны иметь одинаковое рабочее напряжение и тип обмотки (односкоростные, Даландера или разделенные обмотки). Конфигурация схемы должна быть такой, чтобы двигатели соединялись параллельно с клеммами трехфазного переменного тока, в то время как тепловые контакты должны быть соединены последовательно.
Зачем нужна схема “Звезда – Треугольник”?
Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!
ВАЖНО! Если дочитали досюда, ознакомьтесь с моей статьёй про пусковые токи . Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.
- Особенно это критично
там, где нет понижающей передачи – редуктора или ремня на шкивах. - Особенно это важно
там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга. - Особенно это значимо
там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).
Привод отличается от двигателя, как колесо от покрышки и как пускатель от контактора .
Так вот, для того, чтобы уменьшить мощность на валу двигателя во время пуска, его включают сначала на пониженное напряжение, он не спеша разгоняется, а потом врубают по полной, на номинальную мощность. Реализуется это не изменением напряжения реостатами и трансформаторами, а более хитро. Но по порядку.
Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
Как подключить двигатель по схеме “Звезда-Треугольник”
По схеме подключения двигателей “Звезда-треугольник” написано предостаточно. Но в каждой статье есть неточности и ошибки. Авторы просто переписывают друг у друга. Подозреваю, что большинство из них ни разу в жизни не подключали двигатель, и на практике не смогут отличить “Звезду” от “Треугольника”. Поэтому решил последовать народной мудрости “хочешь сделать хорошо – сделай это сам”, и написать эту статью.
Рассказываю, полагаясь на свой опыт и понимание вопроса. Как всегда, буду давать теорию и показывать, как это выглядит на практике.
Для начала, если кто совсем не в теме, из какой области знаний вообще это всё? Речь идёт об одном из распространенных способов подключения трехфазного асинхронного электродвигателя, при котором обмотки двигателя сначала подключаются к питающей сети по схеме “звезда”, а потом – по схеме “треугольник”. В молодых пытливых умах сразу возникнет вопрос – “Зачем это нужно?” Рассказываю подробно.
Зачем нужна схема “Звезда – Треугольник”?
Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!
ВАЖНО! Если дочитали досюда, ознакомьтесь с моей статьёй про пусковые токи. Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.
- Особенно это критично там, где нет понижающей передачи – редуктора или ремня на шкивах.
- Особенно это важно там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга.
- Особенно это значимо там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).
Вот такие кабанчики не любят, когда их включают в сеть напрямую
Привод отличается от двигателя, как колесо от покрышки и как пускатель от контактора.
Схемы “Звезда” и “Треугольник”
У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.
Схема обмоток статора с выводами для трехфазного асинхронного двигателя
Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?
На ум пришла статья про включение транзисторных датчиков. Там похожая ситуация – у датчика три вывода, а у нагрузки два…
Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:
Схема соединения обмоток статора “звездой”
Схема соединения обмоток статора “треугольником”
В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания. А вот почему напрямую подключать не всегда возможно, об этом статья.
Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.
На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:
Схемы подключения выводов двигателя: Звезда и Треугольник. Отличия видны сразу
По по схемам мы плотно пройдёмся ниже.
И ещё немного теории.
Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.
Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.
Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:
Указано напряжение только в треугольнике 400 В
Вот этот же двигатель, вид на клеммы в коробке:
Подключение обмоток статора треугольником – клеммы двигателя
В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.
Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.
Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?
Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.
В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.
Бывают номиналы на новый стандарт 230/400 или 240/440 В, но это не так важно.
Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.
Жаль, но тут возникла путаница, и нужно об этом помнить: Напряжения на двигателе обозначаются как “Треугольник/Звезда”, а схема, о которой речь – “Звезда/Треугольник”. В любом случае – номинальное напряжение в “Звезде” всегда больше в √3 раз!
Подробнее рассмотрим работу на этих напряжениях.
220/380 В
Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты. И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!
Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”
Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.
Реальные примеры движков 220-380:
Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”
Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит.
Как будет выглядеть подключение подобного двигателя в коробке:
Подключение в “Звезду” двигателя на 220 – 380 В
Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.
380/660 В
Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.
Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”
Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.
Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”
Вот этот же двигатель, его коробка борно, подключен в треугольник:
Обмотки двигателя подключены в треугольник на 380 В
Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.
Звезда / Треугольник: работа схемы
Хорош теорию, даёшь практику! Как же реализован алгоритм работы схемы подключения? Если очень коротко, схема “Звезда-Треугольник” работает так.
1. Подается питание (а напряжение питания у нас во всех режимах 380 В) на выводы U1, V1, W1, а выводы U2, V2, W2 соединяются в одной точке. Реализуется схема “Звезда”, в которой вместо номинала 660 В подается 380 В:
Первый момент запуска. Обмотки в “Звезде”. Около обмоток указано “380” – это номинал. Реально в данном случае на катушках будет действовать напряжение 220 В!
2. Так двигатель работает несколько секунд (от 5 с до нескольких минут, зависит от тяжести пуска). Это время задается таймером (реле времени), который входит в состав схемы.
3. Далее питание полностью снимается на время второго таймера, двигатель по инерции вращается несколько периодов напряжения (время от 50 до 500 мс). Этот защитный интервал необходим для гарантированной безаварийной работы схемы. Контактор “звездного” режима должен успеть выключиться, прежде чем включится “треугольный” контактор. Ведь время выключения у контакторов всегда в несколько раз больше, чем время включения, из-за явлений намагничивания. К сожалению, эта пауза технически реализуется далеко не всегда…
4. После второго таймера включается основной режим, “Треугольник”, в котором двигатель получает нормальное питание и работает, пока его не выключат:
Схема включения треугольник – работа на крейсерской скорости. На катушках – номинальное напряжение.
Всё, если коротко. Дальше будут временные диаграммы, будет всё понятно.
Есть варианты и без второго таймера, но с обязательной блокировкой включения “Треугольника”, пока не выключится “Звезда”.
Вот как я нарисовал для себя схемку много лет назад:
Звезда-Треугольник. Простейшая схема от руки
Но у меня приличный блог, поэтому дальше будет красиво и по порядку.
Теперь о том, как реализуется этот алгоритм. Для удобства разделим схему на две части, которые могут даже иметь разное питание – силовую и управляющую.
Реализация силовой части схемы
Понятно, что включение двигателя производится контакторами. Их нужно три.
Есть варианты схемы “Звезда-Треугольник” с использованием Преобразователей частоты и Устройств плавного пуска (мягкого пускателя, софтстартера), но не будем раздувать статью.
- КМ1 – это общий контактор, он подаёт питание на выводы U1, V1, W1 сразу и навсегда.
- КМ2 – контактор “Звезды”, он соединяет выводы U2, V2, W2 в одну точку на время разгона.
- КМ3 – контактор “Треугольника”, он подает питание на выводы U2, V2, W2 для дальнейшей работы в номинальном режиме.
Силовая часть схемы “Звезда – Треугольник”
Следите за цветами, буду и дальше их соблюдать для простоты восприятия:
- общий контактор КМ1 – синий,
- контактор “Звезды” КМ2 – зеленый,
- контактор треугольника КМ3 – красный.
Реализация части управления
Включать и выключать эти три контактора можно разными способами, вот несколько:
- Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
- Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
- Релейная схема с таймером. Её рассмотрим ниже.
- Управление от специализированного реле. Это отдельная статья, следите за новостями.
- Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.
Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.
Короче, вот простейшая схема:
Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая
В контактах с временной задержкой все постоянно путаются. У меня – правильно)
Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.
Я писал подробно про задержку времени в статье про приставку выдержку времени ПВЛ. Рекомендую, там обширная теоретическая часть.
Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.
Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):
Практическая схема “Звезда-треугольник” с блокировкой
Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!
Это реальная схема, можно её применять. Если что не понятно – спрашивайте.
Кстати, вместо КА1.1 можно поставить НО контакт с задержкой Отключения. То есть, включается сразу после подачи питания, выключается – через время. Но для этого нужно два отдельных реле времени с разными принципами работы, которые должны быть синхронизированы для гарантированной паузы. Именно так и реализуется в специализированных реле времени “Звезда-Треугольник”.
Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.
Временные диаграммы работы схемы “Звезда-Треугольник”
С привязкой к моей схеме управления, диаграммы включения контакторов:
Временные диаграммы схемы управления звезда-треугольник
Тут вроде всё понятно, но есть одно важное замечание. Ещё раз. Между зеленой и красной областями обязательно нужен небольшой зазор (пауза). Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC). В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!
Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!
Реальный пример схемы
Вот реальный пример такой схемы на электронном реле времени:
Фото схемы звезда-треугольник с управлением на таймере и гальванической развязкой на трансформаторе.
Слева направо в нижнем ряду: КМ1, КМ2, КМ3, КА1.
А вот пример схемы с управлением от контроллера:
Звезда-треугольник, компрессор, управление от программы контроллера
Видео, как щёлкают контакторы в этой схеме:
Вот как красиво оформили схему немцы в своём компрессоре:
Схема компрессора, подключение электродвигателя Звезда – Треугольник
На входе схемы – три провода, на выходе – шесть. Всё сходится)
Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.
Шильдик двигателя 220 / 380 В 0,37 кВт
На оборотной стороне крышки борно, как обычно, приведена схема:
Схема подключения 220 – 380 на крышке двигателя
Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:
Клеммы двигателя в подключены в схеме “Звезда”
Откручиваем гайки М4, снимаем перемычки и провода питания:
Разбираем схему, откидываем провода
Собираем схему в треугольник, на пониженное напряжение 220 В:
Собираем треугольную схему на 220 В
Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!
Кстати, по частотникам планирую цикл статей, подписывайтесь!
Особенность работы в “Звезде”
В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или
отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.
К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)
Видео
Некоторые авторы тоже) доступно и интересно рассказывают о практической стороне вопроса в видео:
Скачать
Я постарался максимально раскрыть тему, но если вам нужны академические знания, пожалуйста:
• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 7131 раз./
• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 2317 раз./
• М.М. Кацман — Электрические машины / Некоторые говорят, что это лучший учебник по электротехнике. В книге рассматриваются теория, принцип действия, устройство и анализ режимов работы электрических машин и трансформаторов как общего, так и специального назначения, получивших распространение в различных отраслях техники., pdf, 22.12 MB, скачан: 2057 раз./
• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1372 раз./
• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1178 раз./
• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2510 раз./
• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1638 раз./
• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2537 раз./
• Каталог двигателей АИР / Каталог двигателей АИР — мощность от 0,12 до 315 кВт; частота вращения 3000, 1500, 1000, 750 об/мин; напряжение сети 220/380 В, 380/660 В;, pdf, 1.07 MB, скачан: 1039 раз./
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2645 раз./
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 2033 раз./
P.S. Про использование специализированного реле времени “Звезда-Треугольник” читайте следующую статью.
Как всегда, жду уточнений и вопросов в комментариях!