Вертикальные вписанные углы в данной окружности равны верно неверно

Вертикальные вписанные углы в данной окружности равны верно неверно

Какие из следующих утверждений верны?

1) Через любые три точки проходит не более одной окружности.

2) Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.

3) Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются.

4) Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Через любые три точки проходит не более одной окружности.» — верно, Через любые три точки, не лежащие на одной прямой, проходит единственная окружность. Если точки лежат на одной прямой, то окружность провести невозможно. Тем самым, через любые три точки можно провести не более одной окружности.

2) «Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.» — верно, если расстояние от центра до прямой меньше радиуса, то окружности имеют две общие точки, если окружности касаются то окружности имеют одну общую точку, если расстояние больше радиуса, то окружности не имеют общих точек.

3) «Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются» — неверно, окружность, радиус которой равен 3, лежит внутри окружности с радиусом 5.

4) «Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.

Видео:8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Центральные и вписанные углы

Вертикальные вписанные углы в данной окружности равны верно неверно

О чем эта статья:

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вертикальные вписанные углы в данной окружности равны верно неверно

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вертикальные вписанные углы в данной окружности равны верно неверно

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вертикальные вписанные углы в данной окружности равны верно неверно

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вертикальные вписанные углы в данной окружности равны верно неверно

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вертикальные вписанные углы в данной окружности равны верно неверно

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вертикальные вписанные углы в данной окружности равны верно неверно

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вертикальные вписанные углы в данной окружности равны верно неверно

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вертикальные вписанные углы в данной окружности равны верно неверно

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вертикальные вписанные углы в данной окружности равны верно неверно

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вертикальные вписанные углы в данной окружности равны верно неверно

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вертикальные вписанные углы в данной окружности равны верно неверно

ㄥBAC + ㄥBDC = 180°

Видео:Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вертикальные вписанные углы в данной окружности равны верно неверно

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вертикальные вписанные углы в данной окружности равны верно неверно

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вертикальные вписанные углы в данной окружности равны верно неверно

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Задание №20 ОГЭ по математике

Видео:Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Анализ геометрических высказываний

В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.

Разбор типовых вариантов задания №20 ОГЭ по математике

Первый вариант задания

Какие из следующих утверждений верны?

  1. Все диаметры окружности равны между собой.
  2. Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
  3. Любые два равносторонних треугольника подобны.
Решение:

Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.

Второй вариант задания

Какие из следующих утверждений верны?

  1. Все высоты равностороннего треугольники равны.
  2. Существуют три прямые, которые проходят через одну точку.
  3. Если диагонали параллелограмма равны, то он является ромбом.
Решение:

Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.

Третий вариант задания

Какие из следующих утверждений верны?

  1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
  2. Любой прямоугольник можно вписать в окружность.
  3. Через заданную точку плоскости можно провести единственную прямую.
Решение:

Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.

Демонстрационный вариант ОГЭ 2019

Укажите номера верных утверждений.

  1. Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
  2. Треугольник со сторонами 1, 2, 4 существует.
  3. Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
  4. В любом параллелограмме диагонали равны.
Решение:

Проанализируем каждое из утверждений:

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

Да, такое утверждение в геометрии есть, с дополнением » и только одну» :

«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»

2) Треугольник со сторонами 1, 2, 4 существует.

Для существования треугольника должно выполняться следующее правило:

Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2

Четвертый вариант задания

Какое из следующих утверждений верно?

1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.

2) Смежные углы всегда равны.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

Решение:

Проанализируем каждое утверждение.

1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.

2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.

3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.

Пятый вариант задания

Какое из следующих утверждений верно?

1) Если угол острый, то смежный с ним угол также является острым.

2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.

3) Касательная к окружности параллельна радиусу, проведённому в точку касания.

Решение:

Выполняем анализ утверждений.

1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.

2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.

3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.

🔍 Видео

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Самое главное про окружность. Центральные и вписанные углы. Задание №16 | PARTA МАТЕМАТИКА ОГЭ 2023Скачать

Самое главное про окружность. Центральные и вписанные углы. Задание №16 | PARTA МАТЕМАТИКА ОГЭ 2023

19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать

19 задание огэ математика 2023 ВСЕ ТИПЫ геометрия

Углы в окружности | ФормулыСкачать

Углы в окружности | Формулы

Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение
Поделиться или сохранить к себе: