Основная окружность в эвольвентном зубчатом зацеплении

Видео:Построение эвольвенты окружностиСкачать

Построение эвольвенты окружности

Детали машин

Видео:Построение эвольвентного зацепленияСкачать

Построение эвольвентного зацепления

Геометрические параметры эвольвентного зацепления

Эвольвентное зацепление зубчатых колес характеризуется различными геометрическими параметрами, оказывающими существенное влияние на свойства и работу передачи. К таким параметрам относятся диаметры начальной, основной и делительной окружностей, окружной шаг зубьев, модуль зацепления, высота головок и ножек зубьев, длина активной линии зацепления, угол наклона линии зуба косозубого колеса, коэффициент перекрытия и некоторые другие.

В обозначении геометрических параметров зацепления используют индексы, относящиеся к характерным окружностям зубчатых колес:

  • w – начальной;
  • b – основной;
  • a – вершин зубьев;
  • f – впадин зубьев.

Параметрам, относящимся к делительной окружности, индекс не присваивается.

При обозначении параметров пары зубчатых колес индекс «1» присваивается шестерне, «2» — колесу.

Начальные окружности

Начальными называют окружности, которые в процессе зацепления перекатываются одна по другой без скольжения (рис. 1), при этом отношение их радиусов (расстояний от центров О1 и О2 до полюса П ) при неизменном межосевом расстоянии О1О2 тоже остается неизменным.
При изменении межосевого расстояния aw меняются и диаметры dw начальных окружностей шестерни и колеса, т. е. у пары зубчатых колес может быть множество начальных окружностей.
У отдельно взятого колеса начальной окружности не существует – по определению этот параметр образуется в зацеплении, т. е. в зубчатой передаче.

Межосевое расстояние определяется по формуле:

Основная окружность в эвольвентном зубчатом зацеплении

Делительная окружность

Окружность, на которой шаг p и угол зацепления α соответственно равны шагу p и углу α профиля инструментальной рейки, называют делительной окружностью (рис. 1). Эта окружность принадлежит отдельно взятому колесу, ее диаметр d при изменении межосевого расстояния остается неизменным.

Делительные окружности совпадают с начальными, если межосевое расстояние пары зубчатых колес равно сумме радиусов делительных окружностей.

У большинства зубчатых передач диаметры делительных и начальных окружностей совпадают, т. е.:

Исключение составляют передачи с угловой модификацией.

Окружной шаг зубьев

Расстояние между одноименными сторонами двух соседних зубьев, взятое по дуге делительной окружности, называют окружным шагом зубьев по делительной окружности и обозначают буквой p (рис. 1).
Для пары зацепляющихся зубчатых колес окружной шаг зубьев должен быть одинаковым.

Основной шаг

Этот параметр, обозначаемый pb , относится к основной окружности. На основании второго и четвертого свойств эвольвенты расстояние по нормали между одноименными сторонами двух соседних зубьев равно шагу pb .
Из треугольника О2ВП (см. рис. 1) диаметр основной окружности db2 = 2 rb2 = d2 cos αw , откуда основной шаг может быть определен по формуле:

Окружная толщина зуба и окружная ширина впадины

Окружная толщина зуба st и окружная ширина впадины et по дуге делительной окружности колеса передачи без смещения теоретически равны. Однако при изготовлении зубчатых колес на теоретический размер st назначают такое расположение поля допуска, при котором зуб получается тоньше, чем и гарантируется боковой зазор j (рис. 1), необходимый для нормального зацепления. По делительной окружности всегда st + et = p .

Окружной модуль зубьев

Из определения окружного шага следует, что длина делительной окружности зубчатого колеса πd = pz , где z – число зубьев. Следовательно,

Шаг зубьев p , так же как длина окружности, включает в себя трансцендентное число π , а поэтом шаг — также число трансцендентное. Для удобства расчетов и измерения зубчатых колес в качестве основного расчетного параметра принято рациональное число p/π , которое называют модулем зубьев , обозначают m и измеряют в миллиметрах:

d = mz или m = d/z .

Модуль зубьев m – часть диаметра делительной окружности, приходящаяся на один зуб.

Модуль является основной характеристикой размера зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым.

Для обеспечения взаимозаменяемости зубчатых колес и унификации дорогостоящего зубонарезного оборудования и инструмента значения m регламентируются стандартом в диапазоне от 0,05 до 100 мм.
В соответствии со стандартным рядом I модуль может принимать следующие значения: 1,0, 1,25, 1,5, 2,0, 2,5, 3,0, 4,0, 5,0, 6,0, 8,0, 10,0.
Стандартный ряд II значительно расширяет диапазон применяемых на практике модулей ( m = 1,125, 1,375, 1,75 и т. д.).

При выборе модулей из стандартных рядов первый ряд следует предпочитать второму.

Высота головки и ножки зуба

Делительная окружность делит зуб по высоте на головку ha и ножку hf . Для создания радиального зазора с (см . рис. 1) необходимо

Для передачи без смещения ha = m .

Длина активной линии зацепления

При вращении зубчатых колес точка зацепления S (см. рис. 1) пары зубьев перемещается по линии зацепления NN . Зацепление профилей начинается в точке S’ пересечения линии зацепления с окружностью вершин колеса и заканчивается в точке S» пересечения линии зацепления с окружностью вершин шестерни.
Отрезок S’S» линии зацепления называют длиной активной линии зацепления и обозначают gα . Длину gα легко определить графически, для чего радиусами окружностей вершин обоих колес отсекают на линии зацепления NN отрезок S’S» и замеряют gα .

Основная окружность в эвольвентном зубчатом зацеплении

Коэффициент торцового перекрытия

Коэффициентом торцового перекрытия εα называют отношение длины активной линии зацепления к основному шагу:

где z1 и z2 – числа зубьев шестерни и колеса; β – угол наклона линии зуба косозубого колеса.

Непрерывность работы зубчатой передачи возможна при условии, когда последующая пара зубьев входит в зацепление до выхода предыдущей, т. е. когда обеспечивается перекрытие работы одной пары зубьев другой. Чем больше пар зубьев одновременно находится в зацеплении, тем выше плавность работы передачи.

За период работ пары зубьев точка их зацепления проходит путь, равный по длине gα (см. рис. 1), а расстояние между профилями соседних зубьев по линии зацепления равно основному шагу pb . При gα > pb необходимое перекрытие зубьев обеспечивается.

По условию непрерывности зацепления должно быть εα > 1. С увеличением количества зубьев z увеличивается и коэффициент торцового перекрытия εα .

Видео:ЭВОЛЬВЕНТНОЕ зубчатое зацепление шестерен. Как это работает?Скачать

ЭВОЛЬВЕНТНОЕ зубчатое зацепление шестерен. Как это работает?

Основная окружность в эвольвентном зубчатом зацеплении

Сопряженные поверхности – поверхности, которые постоянно или с определенной периодичностью входят в зацепление друг с другом.

По отношению к начальным окружностям сопряженные поверхности могут занимать различные положения. Правильным положением является то, которое удовлетворяет основной теореме зацепления, теореме о мгновенном передаточном отношении, которое формулируется следующим образом:

Общая нормаль, проведенная в точке контакта сопряженных поверхностей, проходит через линию центров О1О2 и делит эту линию на части, обратно пропорциональные отношению угловых скоростей.

«-» если зацепление внешнее;

«+» если зацепление внутреннее;

Сопряженные профили должны удовлетворять следующим требованиям:

1. быть простыми в изготовлении (технологичными);

2. иметь высокий КПД.

Таким требованиям удовлетворят эвольвентные профили.

4.3 Эвольвента и ее свойства.

Эвольвента образуется путем перекатывания производящей прямой KyNy без скольжения по основной окружности радиуса rb .

Радиус произвольной окружности – ry . ONy || t t

Из треугольника ONyKy следует, что

Т.к. KyNy перекатывается без скольжения по основной окружности, то

Уравнения (1) И (2) являются уравнениями эвольвенты в параметрической форме.

a у – угол профиля эвольвенты для точки Ку , лежащей на произвольной окружности.

a – угол профиля эвольвенты для точки К , лежащей на делительной окружности радиуса r .

Угол профиля эвольвенты для точки Кb , лежащей на основной окружности, равен нулю: a b =0 .

1. Форма эвольвенты зависит от радиуса основной окружности. При стремлении rb ,эвольвента превращается в прямую линию (пример рейка).

2. Производящая прямая KyNy является нормалью к эвольвенте в данной тоске.

3. Эвольвента начинается от основной окружности. Внутри основной окружности точек эвольвенты нет.

4.4 Элементы эвольвентного зубчатого колеса (рис.8-86).

Делительной окружностью называется окружность стандартных шага р , модуля m и угла профиля a .

Шаг – расстояние между одноименными точками двух соседних профилей зубьев, измеренные по дуге соответствующей окружности.

Модулем называется часть диаметра делительной окружности, приходящаяся на один зуб.

Модуль m, [мм] – стандартная величина и определяется по справочникам, исходя из трех рядов:

1 ряд – наиболее предпочтительный;

2 ряд – средней предпочтительности;

3 ряд – наименее предпочтительный.

Модуль является масштабным фактором высоты зуба. Чем больше модуль, тем выше высота зуба, тем больше плечо силы P, вызывающей изгибные напряжения у основания зуба.

Угол профиля – угол между касательной к эвольвенте в данной точке и радиус-вектором этой точки (см. чертеж эвольвенты).

Угол профиля для точки, лежащей на делительной окружности, является величиной стандартной и равной 20 о (хотя лучше 25 о ).

1. Основные расчетные зависимости для определения параметров эвольвентного зубчатого колеса.

1. Число зубьев z; 2. Модуль m; 3. Ширина венца b; 4.Высота зуба h; 5. Диаметры зубчатого колеса: делительный d=mz; вершин зубьев da; впадин df ; сновной db; произвольный dy; 6. Окружной шаг: делительный p=πm; по произвольной окружности Py; Окружная толщина зуба S, Sa; окружная толщина впадины e; 7. Угловой шаг τ=360˚/z; угловая толщина зуба 2 ψ; 8. Угол профиля зуба на делительной окружности α ; 9. Эвольветные углы: inv αy ; inv αa;10. Радиус кривизны перехода профиля ρf.

Рис.8-86. Элементы и основные параметры эвольвентного прямозубого колеса.

Из (1) следует, что радиус делительной окружности

Основная окружность в эвольвентном зубчатом зацеплении ; Основная окружность в эвольвентном зубчатом зацеплении(3)

модуль по ГОСТу определяется

Основная окружность в эвольвентном зубчатом зацеплении(5)

Основная окружность в эвольвентном зубчатом зацепленииà Основная окружность в эвольвентном зубчатом зацеплении

Основная окружность в эвольвентном зубчатом зацеплении(6)

по основной окружности

a y = 0 à pb = p cos 20 o (7)

2. Виды зубчатых колес.

где Δкоэффициент изменения толщины зуба .

В зависимости от знака коэффициента Δ различают виды зубчатых колес:

1. Δ = 0 s = e = p/2 нулевое зубчатое колесо;

2. Δ > 0 s > e положительное зубчатое колесо;

3. Δ отрицательное зубчатое колесо.

4. Эвольвентная зубчатая передача и ее свойства (рис. 11-86).

ym — воспринимаемое смещение; C — радиальный зазор;

Р — полюс зацепления; rw1, rw2— радиусы начальных окружностей;

φα1 — угол торцевого перекрытия зубчатого колеса.

Рис.11-86. Элементы и основные параметры эвольвентной зубчатой передачи

Эвольвентную зубчатую передачу составляют, как минимум, из 2-х зубчатых колес, при этом в рассмотрение вводится две начальные окружности радиусами rw1 и rw2 .

Меньшее зубчатое колесо в обычной понижающей зубчатой передаче называется шестерня .

Вместо производящей прямой здесь вводится в рассмотрение линия зацепления N1N2 , которая одновременно касается 2-х основных окружностей rb1 и rb2 .

Линия зацепления является геометрическим местом точек контакта сопряженных эвольвентных профилей. В точке В1 пара эвольвент, которые в данный момент времени контактируют в точке К , вошли в зацепление. В точке В2 эта же пара эвольвент из зацепления выходят.

На линии зацепления N1N2 все взаимодействующие эвольвенты при зацеплении касаются друг друга. Вне участка N1N2 эвольвенты пересекаются, и если такое случится, то произойдет заклинивание зубчатого колеса (9-86).

Рис.9-86. Интерференция эвольвет при внешнем зацеплении

а) интерференция эвольвет

Для передачи, составленной из нулевых зубчатых колес a w =20 o

Для передачи, составленной из положительных з. к. a w >20 o

Для передачи, составленной из отрицательных з. к. a w o

c=c * . mрадиальный зазор , величина стандартная, необходим для нормального обеспечения смазки.

c *коэффициент радиального зазора , по ГОСТ c * =0.25 (c * =0.35).

Расстояние между делительными окружностями у . m – это воспринимаемое смещение.

укоэффициент воспринимаемого смещения , он имеет знак, и в зависимости от знака различают:

1. у=0 у . m=0 – нулевая зубчатая передача;

2. у>0 у . m>0 – положительная зубчатая передача;

3. у . m – отрицательная зубчатая передача;

Свойства эвольвентного зацепления .

1. Эвольвентное зацепление молочувствительно к погрешностям изготовления, т.е. при отклонении межосевого расстояния от номинала передаточное отношение зубчатой передачи не изменится.

2. Линия зацепления N1N2 является общей нормалью к сопряженным эвольвентным профилям.

3. Контакт эвольвент осуществляется только на линии зацепления.

Видео:Эвольвентное зацеплениеСкачать

Эвольвентное зацепление

iSopromat.ru

Основная окружность в эвольвентном зубчатом зацеплении

Эвольвентное зацепление зубчатых колес удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, допускает отклонение межосевого расстояния зубчатых передач и точно стандартизируется.

Подавляющее большинство зубчатых передач, применяемых в технике, имеет зубчатые колеса с эвольвентным профилем.

Эвольвента как кривая для формирования профиля зуба была предложена Л. Эйлером. Она обладает значительными преимуществами перед другими кривыми, применяемыми для этой цели, – удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, нечувствительна к неточностям межосевого расстояния (что облегчает сборку), наиболее проста и технологична в изготовлении, легко стандартизируется (что особенно важно для такого распространенного вида механизмов как зубчатые передачи).

На следующем видео показан пример эвольвентного зацепления зубчатых колес

Эвольвента – это траектория движения точки, принадлежащей прямой, перекатывающейся без скольжения по окружности. Данная прямая называется производящей прямой, а окружность, по которой она перекатывается – основной окружностью (рисунок 38 а).

Основная окружность в эвольвентном зубчатом зацеплении

Основная окружность в эвольвентном зубчатом зацеплении

Эвольвента обладает следующими свойствами, которые используются в теории зацепления:

  1. форма эвольвенты определяется радиусом основной окружности;
  2. нормаль к эвольвенте в любой ее точке является касательной к основной окружности. Точка касания нормали с основной окружностью является центром кривизны эвольвенты в рассматриваемой точке;
  3. эвольвенты одной и той же основной окружности являются эквидистантными (равноотстоящими друг от друга) кривыми.

Положение любой точки на эвольвенте может быть однозначно охарактеризовано диаметром окружности, на которой она расположена, а также характерными для эвольвенты углами: углом развернутости (обозначается ν ), углом профиля ( α ), эвольвентным угломinv α (рисунок 38 б). На рисунке 38 б показаны эти углы для произвольно выбранной на эвольвенте точки Y, поэтому они имеют соответствующий индекс:

  • ν Y – угол развернутости эвольвенты до точки у;
  • α Y – угол профиля в точке Y;
  • inv α Y – эвольвентный угол в точке Y (на окружности диаметра dY ).

То есть индекс показывает, на какой окружности находится рассматриваемая точка эвольвенты, поэтому для характерных окружностей используются индексы, приведенные выше.

Например: α a1 – угол профиля эвольвенты в точке, лежащей на окружности вершин первого колеса;
inv α – эвольвентный угол в точке эвольвенты, находящейся на делительной окружности колеса и т.д.

Рассмотрим свойства эвольвенты. Первое свойство имеет строгое математическое доказательство, однако в рамках данного короткого курса оно не приводится.

Так как при формировании эвольвенты производящая прямая перекатывается по основной окружности без скольжения, то в данный момент времени она вращается вокруг точки N (N – мгновенный центр скоростей), описывая бесконечно малую дугу окружности, которая и определяет кривизну эвольвенты в данной точке. Т.е. отрезок NY – это радиус кривизны эвольвенты в точке Y (NY= ρ Y).

Но отрезок NY в точности равен дуге NY0 (это та же дуга только вытянутая в прямую линию). Таким образом, имеем:

Основная окружность в эвольвентном зубчатом зацеплении

Чем больше радиус основной окружности, тем больше радиус кривизны эвольвенты в любой ее точке (то есть форма эвольвенты действительно определяется величиной радиуса основной окружности).

Второе свойство также легко просматривается. Так как N – мгновенный центр скоростей, то скорость точки Y перпендикулярна радиусу NY. Но скорость точки, движущейся по криволинейной траектории, направлена по касательной к этой траектории – в данном случае по касательной к эвольвенте в точке Y.

Перпендикуляр к касательной – есть нормаль, поэтому прямая YN с одной стороны является нормалью к эвольвенте в точке Y, с другой стороны является касательной к основной окружности (как производящая прямая, перекатывающаяся по основной окружности).

То, что точка N является центром кривизны эвольвенты в точке Y, показано при рассмотрении первого свойства. Запишем некоторые зависимости, которые используются в дальнейшем при изучении геометрии эвольвентного зацепления (получаются из рассмотрения рисунка 38 б):

Основная окружность в эвольвентном зубчатом зацеплении

Третье свойство эвольвенты очевидно из рисунка 38а. Действительно, если на производящей прямой взять две точки (А и В), то они будут описывать две совершенно одинаковых эвольвенты, причем, как бы не перемещалась производящая прямая, расстояние между этими точками не изменяется (AiBi = Const). Т.е. действительно это эквидистантные (равноотстоящие друг от друга) кривые. Но, самое важное, что это расстояние AiBi равно расстоянию между этими эвольвентами, измеренному по дуге основной окружности:

Основная окружность в эвольвентном зубчатом зацеплении

Признаком того, что два криволинейных профиля касаются (а не пересекаются), является наличие у них в точке контакта общей нормали. В связи с этим контакт двух эвольвентных профилей происходит на общей касательной к основным окружностям N1N2 (рисунок 39), которая одновременно будет являться общей нормалью к этим профилям в точке их касания в любой момент времени (на основании второго свойства эвольвенты).

Основная окружность в эвольвентном зубчатом зацеплении

Геометрическое место точек контакта профилей, которое они занимают в процессе работы пары зубьев, называется линией зацепления. Таким образом, в эвольвентной передаче линией зацепления является прямая N1N2 (общая касательная к основным окружностям).

На рисунке 39 а показано зацепление двух эвольвентных профилей в разные моменты времени. В обоих положениях прямая N1N2 является общей нормалью к этим касающимся профилям и проходит через полюс зацепления W (мгновенный центр относительного вращения).

Это, с одной стороны показывает, что эвольвентные профили удовлетворяют основному закону зацепления, с другой стороны обеспечивают постоянство передаточного отношения, т.к. полюс зацепления не меняет своего положения в процессе работы пары (отношение O2W/O1W остается постянным).

С изменением межосевого расстояния будет меняться только положение линии зацепления, но вся картина зацепления останется такой же, т.е. по-прежнему будет сохраняться основной закон зацепления, величина и постоянство передаточного отношения. Это очень важное свойство эвольвентного зацепления, т.к. позволяет вписывать передачу в разные межосевые расстояния, что особенно важно при проектировании коробок скоростей, планетарных и дифференциальных механизмов.

Передача оказывается малочувствительной к неточностям межосевого расстояния, что позволяет снизить требования к точности сборки.

Угол между линией зацепления и общей касательной к начальным окружностям в полюсе называется углом зацепления. Угол зацепления, угол профиля на начальной окружности первого колеса и угол профиля на начальной окружности второго колеса равны между собой w1w2w) , поэтому все они обозначаются одинаково – αw (без числового индекса – см. рисунок 39 а).

Отрезок N1N2 называется теоретической линией зацепления. На этом участке происходит нормальная работа двух неограниченных эвольвент.

В реальной передаче эвольвенты ограничены («обрезаны») окружностями вершин, поэтому вся работа пары происходит на участке линии зацепления P1P2, заключенном между окружностями вершин (рисунок 39б).

Отрезок P1P2 называется рабочей (активной) частью линии зацепления (иногда называют просто «рабочая линия зацепления», или «активная линия зацепления»). На рисунке 39б показано два положения одной и той же пары: в начале зацепления (зуб ведомого колеса работает своей вершиной, зуб ведущего колеса – нижней рабочей точкой профиля Р1), и в конце зацепления (зуб ведущего колеса работает своей вершиной и в следующий момент выйдет из зацепления, зуб ведомого колеса работает своей нижней рабочей точкой профиля Р2).

Примечание: здесь термин «нижняя» или «верхняя» точка относится к положению точек относительно основной окружности, независимо от того, как эти точки располагаются одна относительно другой в пространстве. Из двух рассматриваемых точек профиля «нижней» будет та, которая располагается ближе к основной окружности.

При увеличении радиуса основной окружности до бесконечности радиус кривизны эвольвенты в любой ее точке также становится бесконечно большим, т.е. основная окружность и эвольвента превращаются в прямые линии. Эвольвентное зубчатое колесо превращается в зубчатую рейку с прямолинейным профилем зуба.

Таким образом, рейка с прямолинейным профилем зуба представляет собой частный случай эвольвентного зубчатого колеса и обладает всеми его свойствами, т.е. может работать с любым эвольвентным колесом (при одном и том же модуле) без нарушения основного закона зацепления. При этом вращательное движение колеса преобразуется в поступательное движение рейки или поступательное движение рейки преобразуется во вращательное движение колеса с соблюдением постоянства передаточного отношения.

Т.к. зубчатая рейка с прямолинейным профилем зуба с одной стороны имеет простые формы и легко задать размеры ее элементов, с другой стороны представляет собой эвольвентное зубчатое колесо, то ее параметры положены в основу стандартизации эвольвентных зубчатых колес. Стандартная зубчатая рейка называется исходным контуром (рисунок 40а).

Основная окружность в эвольвентном зубчатом зацеплении

Имеется несколько стандартов на исходные контуры, учитывающие специфику некоторых видов передач (мелкомодульных, конических и т.д.). В основном используются параметры, определенные ГОСТ 13 755 – 81.

В соответствии с этим стандартом исходный контур имеет следующие параметры:

  • α = 20 0 – угол профиля исходного контура (основной параметр, определяющий ряд эвольвент, используемых для зубчатых передач в соответствии с этим стандартом, поэтому часто в конструкторской практике говорят, что у нас в стране используется «двадцатиградусная» эвольвента);
  • ha * = 1 – коэффициент высоты головки зуба;
  • c*= 0,25 – коэффициент радиального зазора (по другим стандартам в зависимости от модуля и типа инструмента с* может быть равен 0,2; 0,3; 0,35);

Приведенные коэффициенты являются безразмерными величинами. Абсолютное значение какого-либо размера получается умножением соответствующего коэффициента на модуль (Например: высота головки зуба ha=ha * ∙m; величина радиального зазора c = c*∙m и т. д.).

Таким образом, форма зуба остается постоянной, а абсолютные размеры определяются модулем (т.е. модуль является как бы коэффициентом пропорциональности).

По высоте зуб исходного контура делится на головку и ножку. Это деление осуществляется делительной прямой. Делительная прямая рейки – это прямая, на которой толщина зуба равна ширине впадины (рисунок 40б).

Высота ножки зуба несколько больше головки для обеспечения радиального зазора между вершинами зубьев одного колеса и окружностью впадин другого после сборки передачи.

Стандартные параметры исходного контура на эвольвентное колесо «переносятся» через делительную окружность (на делительной окружности шаг равен стандартному шагу исходного контура p= π ∙ m, угол профиля равен углу профиля исходного контура α = 20 0 ).

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

💥 Видео

Практика_№14_Синтез эвольвентного зацепленияСкачать

Практика_№14_Синтез эвольвентного зацепления

Модуль шестерни и параметры зубчатого колесаСкачать

Модуль шестерни и параметры зубчатого колеса

Синтез эвольвентного зубчатого зацепленияСкачать

Синтез эвольвентного зубчатого зацепления

Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!Скачать

Что такое МОДУЛЬ шестерни? Ты ТОЧНО поймешь!

Эвольвента и ее свойства при построении профиля зубьев находящихся в зацепленииСкачать

Эвольвента и ее свойства при построении профиля зубьев находящихся в зацеплении

Занятие 8 - Построение картины эвольвентного зацепленияСкачать

Занятие 8 - Построение картины эвольвентного зацепления

Лабораторная работа на тему "Построение зубьев эвольвентного профиля методом огибания."Скачать

Лабораторная работа на тему "Построение зубьев эвольвентного профиля методом огибания."

Изготовление шестерни без делительной головки на токарном станкеСкачать

Изготовление шестерни без делительной головки на токарном станке

Как определить шестернюСкачать

Как определить шестерню

Упрощенный способ вычерчивания эвольвентного зубаСкачать

Упрощенный способ вычерчивания эвольвентного зуба

Расчёт любого сопряжённого профиля шестерни методом профильных нормалей на примере эвольвентного.Скачать

Расчёт любого сопряжённого профиля шестерни методом профильных нормалей на примере эвольвентного.

Синтез эвольвентного зубчатого зацепленияСкачать

Синтез эвольвентного зубчатого зацепления

УЦИ как найти центр отверстия детали?..Скачать

УЦИ как найти центр отверстия детали?..

КПД эвольвентного прямозубого зацепления. (Excel-калькулятор).Скачать

КПД эвольвентного прямозубого зацепления. (Excel-калькулятор).

Ответы на вопросы по листу №3 ТММСкачать

Ответы на вопросы по листу №3 ТММ

Зубчатое эвольвентное зацепление в КОМПАС-3D (построение эвольвенты зубчатого колеса)Скачать

Зубчатое эвольвентное зацепление в КОМПАС-3D (построение эвольвенты зубчатого колеса)
Поделиться или сохранить к себе: