Верно ли что длины равных векторов равны

Равные вектора

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

a = b , если a ↑↑ b и | a | = | b |.

Верно ли что длины равных векторов равны
рис. 1

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Примеры задач на равенство векторов

Примеры плоских задач на равенство векторов

a = b — так как их координаты равны,
a ≠ c — так как их координаты не равны,
b ≠ c — так как их координаты не равны.

Проверим равенство компонентов векторов
ax = bx = 1
ay = by => 8 = 2 n => n = 8/2 = 4

Ответ: при n = 4 вектора a и b равны.

Примеры пространственных задач на равенство векторов

a = c — так как их координаты равны,
a ≠ b — так как их координаты не равны,
b ≠ c — так как их координаты не равны.

Проверим равенство компонентов векторов
ax = bx = 1
ay = by = 2
az = bz => 4 = 2 n => n = 4/2 = 2

Ответ: при n = 2 вектора a и b равны.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Векторы, имеющие равные длины

Рассмотрим векторы, имеющие равные длины. Если такие векторы сонаправлены, их называют равными.

У равных векторов совпадает и длина и направление.

Векторы, направленные в противоположные стороны, даже, если у них будут равные длины, равными назвать не получится.

Если совпадает только одна характеристика — длина, то векторы называют равными по модулю.

Видео:Равенство векторов. 9 класс.Скачать

Равенство векторов. 9 класс.

Равные векторы

Если два вектора равны (т. е. одинаковые), то у них одинаковые:

Рассмотрим рисунок 1. На рисунке представлены векторы, обозначенные красным и зеленым цветом. Видно, что векторы имеют равные координаты — проекции на оси. Длины проекций для этих векторов: на ось Ox = 2, на ось Oy = 3. Если векторы имеют равные соответственные проекции (координаты), то эти векторы равны.

Верно ли что длины равных векторов равны

Примечание:

Когда векторы равны, вместо одного из них мы можем использовать второй вектор. Если нам будет удобнее работать со вторым вектором.

Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

Противоположно направленные векторы

Вектор можно развернуть в противоположную сторону. С точки зрения математики, для этого достаточно перед вектором дописать знак минус.

Пример 1:

Векторы ( vec ) и ( -vec ) развернуты в противоположные стороны.

Когда векторы обозначают двумя буквами, то:

Векторы ( overrightarrow ) и ( left( -overrightarrowright) ) направлены в противоположные стороны.

Вектор ( left(-overrightarrow right) ) — это вектор ( overrightarrow ).

На языке математики это записывают так: ( left(-overrightarrowright) = overrightarrow ).

Для вектора ( overrightarrow ): точка A — начальная, B — конечная.

А для вектора (overrightarrow ) наоборот: точка B — начальная, A — конечная.

Когда даны координаты вектора, то, чтобы его развернуть в противоположную сторону, нужно изменить знак каждой его координаты на противоположный.

Пример 2:

Верно ли что длины равных векторов равны

Примечание:

Если равны только длины векторов, а направлены они в противоположные стороны, знак равенства между ними записать не получится. Такие векторы не равны!

Видео:№742. Начертите два вектора: а) имеющие равные длины и неколлинеарныеСкачать

№742. Начертите два вектора: а) имеющие равные длины и неколлинеарные

Физика, равные по модулю противоположно направленне векторы

В физике, в третьем законе Ньютона, идет речь о равных по модулю и противоположно направленных векторах.

Вспомним третий закон Ньютона: ( vec<F_> = -vec< F_> ) – длины векторов равны, а направления противоположны.

Чтобы приравнять такие векторы, необходимо перед одним из них записать знак минус:

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Равные векторы

В различных школьных учебниках определение равных векторов даётся по-разному.

В классическом учебнике Погорелова А. В. понятие равных векторов вводится с помощью параллельного переноса.

Два вектора называются равными, если они совмещаются параллельным переносом.

(то есть существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого).

Верно ли что длины равных векторов равныНапример, изображенные на рисунке

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

Равенство векторов обозначают так:

Верно ли что длины равных векторов равны

(Свойства равных векторов)

1) Равные векторы сонаправлены и имеют равные длины.

2) Равные векторы имеют равные координаты.

3) От любой точки можно отложить вектор, равный данному, и притом только один.

1) 1-е свойство вытекает непосредственно из определения равных векторов и свойств параллельного переноса.

2) Пусть дан вектор

Верно ли что длины равных векторов равны

с началом в точке A(x1; y1) и концом в точке B(x2; y2).

По определению равных векторов, вектор

Верно ли что длины равных векторов равны

равный данному, получен из

Верно ли что длины равных векторов равны

Если этот параллельный перенос задан формулами

Верно ли что длины равных векторов равны

Найдём координаты каждого из векторов:

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

То есть координаты равных векторов

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

Что и требовалось доказать.

Таким образом, координаты задают длину и направление вектора, но не фиксируют его.

3) Пусть даны вектор

Верно ли что длины равных векторов равны

и точка C.
Существует и притом единственный параллельный перенос, при котором точка A переходит в точку C — параллельный перенос на вектор

Верно ли что длины равных векторов равны

При таком параллельном переносе вектор

Верно ли что длины равных векторов равны

переходит в вектор

Верно ли что длины равных векторов равны

По определению равных векторов,

Верно ли что длины равных векторов равны

Что и требовалось доказать.

На практике, если требуется отложить от некоторой точки вектор, равный данному, удобно это делать с помощью параллелограмма (если точка, от которой откладывается вектор, не лежит на прямой, содержащей этот вектор).

Верно ли что длины равных векторов равныНапример,

Верно ли что длины равных векторов равны

отложенный от точки C, равен вектору

Верно ли что длины равных векторов равны

(Признаки равенства векторов)

1) Если векторы сонаправлены и имеют одинаковые длины, то они равны.

2) Если у векторов соответствующие координаты равны, то векторы равны.

1) Верно ли что длины равных векторов равныПусть векторы

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

сонаправлены и имеют одинаковые длины.

Параллельный перенос, который переводит точку A в точку C, совмещает луч CD с лучом AB (поскольку векторы одинаково направлены). А так как длины отрезков CD и AB равны, то точка D при этом совместится с точкой B. Таким образом, этот параллельный перенос вектор

Верно ли что длины равных векторов равны

переводит в вектор

Верно ли что длины равных векторов равны

По определению равных векторов,

Верно ли что длины равных векторов равны

Что и требовалось доказать.

2) Пусть векторы

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

Параллельный перенос, заданный формулами

Верно ли что длины равных векторов равны

переводит точку A в точку A′, точку B — в точку B′, то есть совмещает векторы

Верно ли что длины равных векторов равны

Верно ли что длины равных векторов равны

А это означает, что

Верно ли что длины равных векторов равны

Что и требовалось доказать.

В учебнике Атанасяна Л. С. и др. дано другое определение равных векторов.

Два вектора называются равными, если они сонаправлены и имеют одинаковую длину.

📸 Видео

Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать

Вектор. Определение. Коллинеарные векторы. Равные векторы.

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Нахождение длины вектора. Практическая часть. 9 класс.Скачать

Нахождение длины вектора. Практическая часть. 9 класс.

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Все о векторах за 60 минут | Математика ОГЭ | Молодой РепетиторСкачать

Все о векторах за 60 минут | Математика ОГЭ | Молодой Репетитор

Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

егэ векторы решу егэ все задания №2 профильСкачать

егэ векторы решу егэ все задания №2 профиль

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

9 класс, 18 урок, Скалярное произведение векторовСкачать

9 класс, 18 урок, Скалярное произведение векторов
Поделиться или сохранить к себе: