Векторы силы тяжести и веса

Векторы силы тяжести и веса

Все тела обладающие массой притягиваются друг к другу. Исаак Ньютон на основе многолетних данных астрономических наблюдений и законов динамики сформулировал закон всемирного тяготения : две любые материальные точки массами m 1 и m 2 притягиваются друг к другу вдоль линии соединяющей точки с силой прямо пропорциональной произведению масс точек и обратно пропорциональной квадрату расстояния (r) между ними:

где — гравитационная постоянная. Из формулы видно, что величина гравитационного взаимодействия не зависит от среды, в которой находятся взаимодействующие тела, гравитационное взаимодействие существует и в вакууме. На рисунке1.8.1 изображено направление сил гравитационного взаимодействия двух материальных точек.

Земля не является «материальной точкой» для тел, расположенных на ее поверхности. Теоретически доказано, что сила, с которой Земля притягивает тела, расположенные вне ее, равна силе, которую создавала бы материальная точка массой (М), равной массе Земли, и расположенная в центре Земли. Назовем силой тяжести силу, с которой тело взаимодействует с планетой, вблизи которой оно находится.

В соответствии с законом всемирного тяготения на материальную точку массой (m) со стороны Земли будет действовать сила тяжести, равная

где R — радиус Земли, в месте расположения точки. Выражение (1.8.2.) можно переписать в виде:

где g — имеет смысл ускорения, с которым движутся под действием силы тяжести все материальные тела у поверхности Земли.

Согласно фундаментальному физическому закону — обобщенному закону Галилея , все тела в одном и том же поле тяготения падают с одинаковым ускорением. Оно изменяется вблизи поверхности Земли с широтой в пределах от 9,780 м/с 2 на экваторе до 9,832 м/с 2 на полюсах. Это обусловлено суточным вращением Земли, с одной стороны, и сплюснутостью Земли — с другой (экваториальный и полярный радиусы Земли равны соответственно 6378 и 6357 км). Так как различие значений g невелико, ускорение свободного падания, которое используется при решении практических задач, принимается равным 9,81 м/с 2 .

Пусть тело расположено на расстоянии (±h) от поверхности Земли (знак плюс — над поверхностью, знак минус — под поверхностью), тогда сила тяжести с удалением от поверхности Земли уменьшается, а при приближении к центру Земли — увеличивается:

Вес тела — сила, с которой тело вследствие тяготения к Земле действует на опору или подвес, удерживающую тело от свободного падения.

Вес тела проявляется, когда тело движется с ускорением отличным от ускорения свободного падения (g), т.е. когда на тело кроме силы тяжести действуют другие силы. Если тело движется в поле тяготения Земли с ускорением , то к этому телу приложена дополнительная сила , удовлетворяющая условию:

Вес тела , движущегося с ускорением равен произведению массы тела на геометрическую разность ускорения свободного падения и ускорения тела.

Если тело движется с ускорением равным ускорению силы тяжести, то вес тела будет равен нулю:

1) вес тела равен нулю когда тело движется с ускорением равным ускорению силы тяжести ( ) в лифте вертикально вниз;

2) космический корабль движется по орбите, при этом его центростремительное ускорение , направлено так же как ускорение силы тяжести вдоль радиуса к центру Земли, и вес всех тел находящихся в корабле равен нулю.

Закон всемирного тяготения определяет величину и направление силы всемирного тяготения, но не отвечает на вопрос как осуществляется это взаимодействие. Гравитационное взаимодействие между телами осуществляется с помощью поля тяготения, или гравитационного поля.

Гравитационное поле — это особый вид материи, который создается вокруг любого тела обладающего массой, главное свойство гравитационного поля — действовать на тела, обладающие массой. Как и любое поле — гравитационное поле характеризуется с помощью двух физических величин:

1. Напряженность гравитационного поля ( ), силовая характеристика поля, равна силе, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действующей силой (это ничто иное как ускорение, с которым тело движется в поле тяготения):

Единица измерения напряженности гравитационного поля [g]=м/с 2 .

Линия напряженности гравитационного поля — линия, касательные, к каждой точке которой совпадает с вектором напряженности.

На всякое тело массой m, внесенное в поле, действует сила тяготения или сила тяжести , равная произведению массы тела на напряженность гравитационного поля в месте расположения тела:

Независимо от своей массы все тела под действием силы тяжести движутся с одинаковым ускорением ( )

2. Потенциал гравитационного поля (φ) — энергетическая характеристика поля, скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля:

Единица измерения [φ]=Дж/кг.

Потенциальная энергия тела в гравитационном поле равна:

Тогда работа гравитационного поля по перемещению тела из точки с потенциалом φ 1 в точку с потенциалом φ 2 равна:

Работа гравитационного поля по перемещению тела между двумя точками не зависит от траектории движения тела, а определяется только разностью потенциалов начальной и конечной точек, на замкнутом пути работа гравитационного поля равна нулю. То есть, сила всемирного тяготения и сила тяжести являются консервативными.

Эквипотенциальные поверхности — поверхности, образованные точками поля, потенциал которых одинаков. Работа гравитационного поля при движении тела вдоль эквипотенциальной поверхности равна нулю.

Можно дать второе определение потенциала поля тяготения — это работа по перемещению единичной массы из данной точки поля в бесконечность.

В качестве примера рассмотрим гравитационное поле материальной точки.

1. Напряженность гравитационного поля материальной точки массой (M) прямо пропорциональна массе точки, и убывает по величине обратно пропорционально расстоянию от этой точки (r), направлена вдоль лучей, сходящихся в точке — источнике поля:

2. Потенциал гравитационного поля материальной точки массой (M) — прямо пропорционален массе материальной точки, создающей поле и убывает обратно пропорционально расстоянию от источника поля:

Из формулы (1.8.11) вытекает, что геометрическое место точек с одинаковым потенциалом, т.е. эквипотенциальные поверхности данного поля — это сферические поверхности.

Наглядную картину поля представляет набор линий напряженности и эквипотенциальных поверхностей, например, гравитационное поле материальной точки представлено на рисунке (1.8.2).

Потенциальная энергия тела массой (m), находящегося на расстоянии r от источника гравитационного поля — тела массой (M):

Мы уже упоминали, что гравитационное поле Земли можно рассматривать, как поле материальной точки расположенной в центре Земли. Тогда потенциальная энергия тела, находящегося на высоте h относительно Земли:

где R — радиус Земли. Так как

, и, учитывая, что h .

Потенциальная энергия тела на высоте h над поверхностью Земли, равна:

Рассмотрим взаимосвязь между потенциалом и напряженностью поля тяготения.

Элементарная работа, совершаемая полем при малом перемещении тела массой (m), равна

С другой стороны ,

где dl — элементарное перемещение.

Величина dφ/dl характеризует изменение потенциала на единицу длины в направлении перемещения в поле тяготения, это ничто иное, как градиент потенциала.

Таким образом, напряженность гравитационного поля численно равна градиенту потенциала гравитационного поля и направлена в сторону его уменьшения:

На Земле приблизительно инерциальными являются системы отсчета, которые покоятся или движутся равномерно и прямолинейно относительно точек на поверхности Земли.

Системы отсчета, движущиеся с ускорением, относительно ИСО — это неинерциальные системы отсчета. В них возникают силы инерции, которые требуют корректировки второго закона Ньютона.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета : произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета:

Так как ( — ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, рассматривают три варианта проявления этих сил.

1. Сила инерции возникает при ускоренном поступательном движении системы отсчета и направлена против вектора ускорения неинерциальной системы отсчета :

Вы испытываете на себе действие силы инерции каждый раз когда автомобиль, в котором вы находитесь, разгоняется — и вас прижимает к спинке сиденья, и наоборот, когда тормозит — вы удаляетесь от спинки сиденья. Система отсчета, связанная с автомобилем движется с ускорением, вы неподвижны в этой системе отсчета и на вас действует сила инерции направленная противоположно ускорению автомобиля.

2. Центробежная сила инерции — сила инерции, действующая на тело, покоящееся во вращающейся системе отсчета:

где ω — угловая скорость вращения неинерциальной системы отсчета; — радиус-вектор, характеризующий положение тела относительно оси вращения системы; центробежная сила направлена вдоль радиус-вектора в сторону от оси вращения системы.

Действию центробежной силы инерции подвергаются пассажиры в движущемся транспорте на поворотах; летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах, где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов) принимаются специальные меры для уравновешивания центробежных сил инерции.

3. Сила Кориолиса — сила инерции, действующая на тело, поступательно движущееся со скоростью , во вращающейся с угловой скоростью системе отсчета:

равна произведению удвоенной массы тела на векторное произведение скорости поступательного движения тела относительно системы отсчета и угловой скорости вращения системы отсчета. Эта сила направлена перпендикулярно векторам скорости тела и угловой скорости вращения системы в соответствии с правилом правого винта.

Пусть шарик массой m движется с постоянной скорость ν вдоль радиуса равномерно вращающегося диска (рис.1.8.3). Если диск не вращается, то шарик движется вдоль радиуса и попадает в точку А, если же диск привести во вращение в направлении указанном стрелкой, то шарик катится по кривой ОВ, причем его скорость ν относительно диска изменяет свое направление. Это возможно, если на шарик действует сила перпендикулярная скорости ν — это и есть сила Кориолиса.

Земля представляет собой вращающуюся систему отсчета и действие силы Кориолиса объясняет ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис.1.8.4), то сила Кориолиса будет направлена вправо по отношению к направлению движения, и тело отклонится на восток. Если тело движется в юг, то сила Кориолиса также направлена вправо по отношению к направлению движения, и тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета : произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции):

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета, поэтому они не подчиняются третьему закону Ньютона. Два основных положения механики: 1) ускорение всегда вызывается силой; 2) сила всегда обусловлена взаимодействием между телами, в неинерциальных системах отсчета одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса .

Таким образом, силы инерции действуют только в неинерциальных системах отсчета, в инерциальных системах отсчета таких сил не существует.

Все тела независимо от их масс и химического состава, получают в данном гравитационном поле одинаковые ускорения. Поэтому в таком поле они движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают свободно движущиеся тела, если их движение рассматривать относительно какой-либо неинерциальной системы отсчета.

Силы инерции, действующие на тела неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия.

При некоторых условиях силы тяготения и силы инерции невозможно различить. Например, представьте себе груз, подвешенный на пружине в неподвижном лифте, висящем в однородном поле тяжести — на груз действует сила тяжести и он растягивает пружину.

Пусть лифт настолько удален от Земли и прочих небесных тел, что он не испытывает гравитационных воздействий. Пусть кто-то тянет за трос лифта, сообщая ему постоянное ускорение ( ). Гравитационного поля в лифте нет, но зато есть сила инерции ( ). Груз, подвешенный на пружине растянет ее, как если бы он обладал весом .

Все механические явления и движения в лифте будут в точности такими же, что и в неподвижном лифте, висящем в поле тяжести.

Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции.

Принципа эквивалентности Эйнштейна: все физические явления в поле сил тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы.

Принцип эквивалентности гравитационных сил и сил инерции можно рассматривать как принцип эквивалентности гравитационной и инерционной масс тела.

© ФГОУ ВПО Красноярский государственный аграрный университет, 2013

Видео:Урок 33 (осн). Сила тяжестиСкачать

Урок 33 (осн). Сила тяжести

Сила тяжести, масса и вес тела, невесомость

Видео:Урок 62. Сила тяжести и вес тела. Невесомость.Скачать

Урок 62. Сила тяжести и вес тела. Невесомость.

Масса

Масса обозначается символом (m ), является скалярной величиной и в СИ измеряется в килограммах.

Иногда массу в условии некоторых задач задают в граммах или, например, в тоннах. Чтобы перевести массу в килограммы, используют такие формулы:

[ large boxed < beginm = left( text right) cdot 10^ left( textright) \ m = left( text right) cdot 10^ left( textright) \ m = left( text right) cdot 10^ left( textright) \ m = left( text right) cdot 10^ left( textright) \ end> ]

  • ( large text ) – подставьте количество тонн вместо этой скобки;
  • ( large text ) – вместо этой скобки подставьте количество сотен килограммов;
  • ( large text ) – подставьте количество граммов вместо этой скобки;
  • ( large text ) – вместо этой скобки подставьте количество миллиграммов;

От массы зависят инерционные и гравитационные свойства физических тел.

Масса в природе проявляет себя двумя способами. Поэтому, выделяют:

  1. массу инертную и
  2. массу гравитационную.

Инертная масса

Масса инертная влияет на способность тела двигаться по инерции. Такая масса используется в формуле второго закона Ньютона.

Пусть два тела находятся в инерциальной системе отсчета. Если какая-либо сила одинаково ускоряет эти тела, то они обладают одинаковой инертной массой. Здесь «одинаково ускоряет» следует понимать, как «сообщает одинаковые ускорения».

Гравитационная масса

Гравитационная масса определяет силу, с которой тело притягивается к другим телам. Эта масса используется в формуле закона всемирного тяготения.

Различные эксперименты показали, что инертная и гравитационная массы равны с высокой степенью точности. Поэтому, при изучении школьной физики можно просто говорить «масса», не уточняя, о какой именно массе идет речь.

Так же, масса входит в формулы для расчета импульса и механической энергии.

Массой обладают все макроскопические тела, а, так же, такие элементарные частицы, как протоны, нейтроны, электроны и т. д. Однако, существуют и частицы, у которых нет массы покоя, например – фотоны.

Примечание: Фотон – элементарная частица, переносчик электромагнитного взаимодействия, движется со скоростью света, часто проявляет волновые свойства. Подробнее о фотонах вы узнаете в основах квантовой физики.

Видео:Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

Сила тяжести

Сила тяжести — это сила, с которой Земля притягивает к себе тело.

(large vec<F_<text>> left(Hright) ) — сила тяжести, она действует на тело со стороны планеты (или другого крупного небесного тела, например, астероида, или звезды).

(large m left(textright) ) — масса тела;

(large vec left(frac<text><c^>right) ) — ускорение свободного падения, это не постоянная величина, она может меняться. Читайте подробнее о ускорении свободного падения .

Вес – это сила. Этой силой тело давит на опору, когда опирается на нее, или растягивает подвес, когда на нем висит.

Является векторной величиной и обозначается символом (vec

).

(vec

left(Hright) ) – вес тела, как любая сила в СИ измеряется в Ньютонах.

Вес отличается от массы. Вес, как и любая сила, измеряется в Ньютонах, а масса измеряется в килограммах.

Когда тело опирается о горизонтальную поверхность, его вес равен по модулю силе реакции опоры по третьему закону Ньютона. Поэтому, в задачах для нахождения веса удобно вычислять силу (large vec). Как только мы найдем реакцию опоры (large vec), мы найдем вес тела, давящего на эту опору.

Примечание: Векторы равны по модулю, когда обладают одинаковыми длинами. Так как длина вектора обозначается числом, то физики о равных по модулю векторах сил могут сказать: силы численно равны.

Чем вес отличается от силы тяжести

Вес — это сила, принадлежащая телу. А сила тяжести — это сила, действующая на тело со стороны планеты, или любого другого (крупного) тела.

Видео:МАССА и ВЕС тела: в чем отличие? Как найти СИЛУ ТЯЖЕСТИСкачать

МАССА и ВЕС тела: в чем отличие? Как найти СИЛУ ТЯЖЕСТИ

Что такое невесомость

Подбросим мяч вверх и рассмотрим свободный полет мяча. Пока он в полете, он не давит на опору и не растягивает подвес. Проще говоря, мяч находится в невесомости – то есть, не имеет веса.

Масса есть всегда, а вес может отсутствовать! Как убедимся чуть позже, одна и та же масса может обладать различным весом.

Видео:В ЧЕМ же РАЗНИЦА?! СИЛА ТЯЖЕСТИ и ВЕС ТЕЛАСкачать

В ЧЕМ же РАЗНИЦА?! СИЛА ТЯЖЕСТИ и ВЕС ТЕЛА

Как изменяется вес тела лифте

Давайте выясним, какой вес имеет тело, находящееся в покоящемся лифте, или в лифте, который будет двигаться вверх или вниз с ускорением, или без него.

Если скорость лифта не изменяется

Сначала рассмотрим покоящийся лифт (рис. 1а), либо движущийся вверх (рис. 1б), или вниз (рис. 1в) с неизменной скоростью.

Примечание: «неизменной», также, значит «постоянной», или «одной и той же».

Векторы силы тяжести и веса

По первому закону Ньютона, когда действие других тел скомпенсировано, тело, не меняющее свою скорость, находится в инерциальной системе отсчета.

Как видно из рисунка, взаимодействуют два объекта: тело и опора. Тело давит своим весом на опору, а опора отвечает телу (рис. 1) силой своей реакции.

Будем записывать для рассмотренных случаев рисунка 1 векторные силовые уравнения:

[ large N – m cdot g = 0 ]

А в этой статье подробно и с объяснениями написано о том, как составлять силовые уравнения (ссылка).

Прибавив к обеим частям уравнения величину ( m cdot vec ), получим

[ large N = m cdot g ]

По третьему закону Ньютона, вес тела и реакция опоры направлены противоположно и равны по модулю. Поэтому, найдя силу реакции опоры, мы автоматически находим вес тела.

Воспользуемся тем, что ( left|vec right|= left|vec

right|), получим

То есть, вес тела в покоящемся лифте, или движущемся вверх или вниз с неизменной скоростью, будет равен ( mg ). Если вектор скорости лифта не изменяется ни по направлению, ни по модулю, лифт можно считать инерциальной системой отсчета.

Если скорость лифта изменяется

Теперь выясним, каким весом будет обладать тело в лифте, движущемся с ускорением (рис. 2).

Примечание: Лифт, движущийся с ускорением, не является инерциальной системой отсчета. Читайте подробнее о инерциальных системах.

Векторы силы тяжести и веса

Запишем силовые уравнения. Для рисунка 2а, уравнение выглядит так:

[ large N – m cdot g = m cdot a ]

А для рисунка 2б, так:

[ large N – m cdot g = — m cdot a ]

Прибавим теперь к обеим частям уравнений величину ( m cdot g ), получим:

( large N = m cdot a + m cdot g ) – для случая рис. 2а;

( large N = — m cdot a + m cdot g ) – для рис. 2б;

Вынесем массу за скобки

( large N = m cdot left( a + g right) ) – для рис. 2а;

( large N = m cdot left( -a + g right) ) – для рис. 2б;

Учтем, что ( left|vec right|= left|vec

right|), окончательно запишем

Для рисунка 2а — движение лифта вверх с ускорением:

Вес тела в движущемся с ускорением вверх лифте, будет равен ( m cdot left( g + a right) ), то есть, превышает величину ( m cdot g ).

Когда лифт движется вниз с ускорением (рис. 2б), вес тела, наоборот — уменьшается:

Напомним, что вес в покоящемся, или движущемся вверх или вниз с неизменной скоростью лифте, в точности равен ( m cdot g ).

Вес тела в движущемся вниз с ускорением лифте, равен ( m cdot left( g — a right) ), это меньше величины ( m cdot g ).

Значит, одна и та же масса может обладать разным весом, мало того, в некоторых случаях вес вообще может отсутствовать. Масса есть всегда, а вес может отсутствовать!

Видео:Физика 7 класс (Урок№12 - Сила. Сила тяжести.)Скачать

Физика 7 класс (Урок№12 - Сила. Сила тяжести.)

Что такое перегрузка

Когда вес тела больше силы тяжести, говорят, что возникает перегрузка.

[ large boxed

m cdot g >]

Когда говорят о перегрузке, принято сравнивать ускорение движения вверх с ускорением свободного падения (large vec).

Например, при движении ракеты с ускорением вверх, космонавт может испытывать перегрузки до 7g. Это значит, что его вес увеличивается в 7 раз.

Первый космонавт мира — Юрий Гагарин, упоминал о перегрузке: «…какая-то сила вдавливает меня в кресло все больше и больше. … трудно пошевелить рукой или ногой…».

Подобным образом мы испытываем перегрузки в самолете во время взлета — эти перегрузки вдавливают нас в кресло. Правда, эти перегрузки значительно меньше, чем перегрузки летчиков — спортсменов, или военных, летчиков — космонавтов. Представители этих профессий тренируют свое тело для того, чтобы перегрузки легче переносить.

Видео:2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | ЛекториумСкачать

2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | Лекториум

Подведем итоги

(P = m cdot g ) — вес тела в покоящемся или движущемся вверх или вниз с постоянной скоростью лифте.

( P = m cdot left( g + a right) ) — вес, когда лифт движется с ускорением вверх;

( P = m cdot left( g — a right) ) — вес в движущемся вниз с ускорением;

Если ускорение лифта при его движении вниз ( a = g ), наступит невесомость, вес тела исчезнет ( P = 0 ).

Видео:Силы. Сила тяжести, весСкачать

Силы. Сила тяжести, вес

Векторы силы тяжести и веса

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли. Сила, с которой Земля притягивает каждое тело, определяется по формуле

Векторы силы тяжести и веса Векторы силы тяжести и веса

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз.

Векторы силы тяжести и веса

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

где М — масса Земли; R — радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета — Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес — это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Согласно приведенному выше определению понятия «вес», можно написать, что Р=-Fyп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

📹 Видео

Вес телаСкачать

Вес тела

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Явления тяготения. Сила тяжести | Физика 7 класс #18 | ИнфоурокСкачать

Явления тяготения. Сила тяжести | Физика 7 класс #18 | Инфоурок

Вес тела | Физика 7 класс #20 | ИнфоурокСкачать

Вес тела | Физика 7 класс #20 | Инфоурок

Урок 116. Работа силы тяжести. Потенциальная энергия тела, поднятого над ЗемлейСкачать

Урок 116. Работа силы тяжести. Потенциальная энергия тела, поднятого над Землей

СИЛА ТЯЖЕСТИ масса ВЕС ТЕЛА 7 класс физика ПерышкинСкачать

СИЛА ТЯЖЕСТИ масса ВЕС ТЕЛА 7 класс физика Перышкин

Урок 37 (осн). Задачи на вычисление весаСкачать

Урок 37 (осн). Задачи на вычисление веса

Явление тяготения. Сила тяжести. 7 класс.Скачать

Явление тяготения. Сила тяжести. 7 класс.

Урок 36 (осн). Вес телаСкачать

Урок 36 (осн). Вес тела

Момент силы. Определение, размерность и знаки. Плечо силыСкачать

Момент силы. Определение, размерность и знаки. Плечо силы

Вес тела. 7 класс.Скачать

Вес тела. 7 класс.

Урок 32 (осн). Сила. Единицы силы. Изображение силСкачать

Урок 32 (осн). Сила. Единицы силы. Изображение сил
Поделиться или сохранить к себе: