Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.
Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:
Вычислим определитель, составленный из координат векторов :
, значит, векторы линейно независимы и образуют базис трехмерного пространства.
! Важно: координаты векторов обязательно записываем в столбцыопределителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.
Теперь вспомним теоретическую часть: если векторы образуют базис, то любой вектор можно единственным способом разложить по данному базису: , где – координаты вектора в базисе .
Поскольку наши векторы образуют базис трёхмерного пространства (это уже доказано), то вектор можно единственным образом разложить по данному базису:
, где – координаты вектора в базисе .
По условию и требуется найти координаты .
Для удобства объяснения поменяю части местами: . В целях нахождения следует расписать данное равенство покоординатно:
По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя , в правую часть записаны координаты вектора .
Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера, часто даже в условии задачи есть такое требование.
Главный определитель системы уже найден:
, значит, система имеет единственное решение.
Дальнейшее – дело техники:
Таким образом:
– разложение вектора по базису .
Ответ:
Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.
Такая же задача с трёхмерными векторами для самостоятельного решения:
Даны векторы . Показать, что векторы образуют базис и найти координаты вектора в этом базисе. Систему линейных уравнений решить методом Крамера.
Полное решение и примерный образец чистового оформления в конце урока.
Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.
Любите векторы, и векторы полюбят вас!
Решения и ответы:
Пример 2: Решение: составим пропорцию из соответствующих координат векторов:
Ответ: при
Пример 4: Доказательство: Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон и .
Найдём векторы:
Вычислим определитель, составленный из координат векторов :
, значит, данные векторы не коллинеарны, и стороны не параллельны.
2) Проверим параллельность противоположных сторон и .
Найдём векторы:
Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .
Вывод: Две стороны четырёхугольника параллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.
Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Система не имеет решения, значит, векторы не коллинеарны.
Более простое оформление:
– вторая и третья координаты не пропорциональны, значит, векторы не коллинеарны.
Ответ: векторы не коллинеарны.
в) Исследуем на коллинеарность векторы . Составим систему:
Соответствующие координаты векторов пропорциональны, значит
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ:
Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):
, значит, векторы линейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса
Пример 9:Решение:Вычислим определитель, составленный из координат векторов :
Таким образом, векторы линейно независимы и образуют базис.
Представим вектор в виде линейной комбинации базисных векторов:
Покоординатно:
Систему решим по формулам Крамера:
, значит, система имеет единственное решение.
Ответ: Векторы образуют базис,
Автор: Емелин Александр
Высшая математика для заочников и не только >>>
(Переход на главную страницу)
Как можно отблагодарить автора?
Векторное произведение векторов.
Смешанное произведение векторов
На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов. Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов, требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение, даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)
Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников, чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах
Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы, а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!
Видео:Координаты в новом базисеСкачать
Координаты вектора в базисе
Пример №1 . Даны векторы ε1(2;1;3), ε2(3;-2;1), ε3(1;-3;-4), X(7;0;7). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.
Решение. Данная задача состоит из двух частей. Сначала необходимо проверить, образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.
Вычислим определитель матрицы:
E = |
|
∆ = 2*((-2)*(-4) — (-3)*1) — 3*(1*(-4) — (-3)*3) + 1*(1*1 — (-2)*3) = 14
Определитель матрицы равен ∆ =14
Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α1α2α3, что имеет место равенство:
X = ⓫ε1 + ⓬ε2 + ⓭ε3
Запишем данное равенство в координатной форме:
(7;0;7) = α(2;1;3) + α(3;-2;1) + α(1;-3;-4)
Используя свойства векторов, получим следующее равенство:
(7;0;7) = (2α1;1α1;3α1😉 + (3α2;-2α2;1α2😉 + (1α3;-3α3;-4α3😉
(7;0;7) = (2α1 + 3α2 + 1α3;1α1 -2α2 -3α3;3α1 + 1α2 -4α3)
По свойству равенства векторов имеем:
2α1 + 3α2 + 1α3 = 7
1α1 -2α2 -3α3 = 0
3α1 + 1α2 -4α3 = 7
Решаем полученную систему уравнений методом Гаусса или методом Крамера.
Ответ:
X = |
|
X = 2ε1 + ε2
В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
Пример №2 . В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
a1=(1;5;3), a2=(2;1;-1), a3=(4;2;1), a4=(17;13;4).
Видео:Решение убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 10Скачать
Связь между базисами линейного пространства
Пусть в линейном пространстве Хп заданы базисы Разложим векторы базиса е’ по базису е:
называют матрицей перехода от базиса е к базису е’. Заметим, что столбцами матрицы Т являются столбцы координат соответствующих векторов базиса е! в базисе е.
Соотношения (4.15) устанавливают связь между базисами е и е’. Эти соотношения удобно записать в матричной форме
Точно так же векторы базиса е можно разложить по базису е’, и тогда придем к соотношению
где Т’ — матрица перехода от базиса е’ к базису е. Столбцами матрицы Т’ служат координатные столбцы соответствующих векторов базиса е в базисе е‘.
Из соотношений е = е’ Т’ и е’ = е Т следуют выражения
из которых вытекают соотношения
Из этих соотношений в силу линейной независимости векторов базисов еие’ получаем: ТТ’ = Т’ Т = Е. Следовательно, Т’ = Т
Таким образом, матрица перехода от одного базиса п-мерного линейного пространства к другому является невырожденной матрицей n-го порядка с элементами из основного поля Р. Верно и противоположное утверждение, т.е. верна следующая теорема.
Теорема ^.10. Любая невырожденная квадратная матрица п-го порядка с элементами из поля Р служит матрицей перехода от данного базиса п-мерного линейного пространства X над полем Р к некоторому другому базису в X.
> Пусть даны базис е = (ei,e2, . еп) линейного пространства X и невырожденная квадратная матрица
n-го порядка с элементами из поля Р. В пространстве X выберем упорядоченную систему векторов е’ = (е[, е’2,е’п), для которых столбцы матрицы Т являются координатными столбцами в базисе е.
Система векторов е’ состоит из п векторов и является линейно независимой, так как у невырожденной матрицы Т столбцы линейно независимы. Поэтому эта система — базис в линейном пространстве X, причем в силу выбора векторов системы выполняется равенство е’ = еТ. Это означает, что матрица Т представляет собой матрицу перехода от базиса е к базису е!. ?
Из доказанной теоремы вытекает, что в n-мерном лиейном пространстве X над полем Р существует столько различных базисов, сколько существует различных невырожденных квадратных матриц n-го порядка с элементами из поля Р. При этом учтено, что различны базисы, состоящие из одних векторов, но по-разному упорядоченных.
Практическое правило. Для построения матрицы Т перехода от базиса е к базису е! нужно для каждого вектора е’ базиса е! найти координаты в базисе е и из них, как из столбцов, построить матрицу Т.
Если векторы базисов е и е! заданы координатами в некотором базисе е°, то для отыскания координат вектора е’ в базисе е следует составить векторное равенство
от него перейти к покоординатным равенствам и из полученной системы уравнений найти искомый столбец координат (ац, «2, . ап) Т вектора е’ в базисе е.
При отыскании матрицы Т можно также пользоваться формулой
где Т — матрица перехода от базиса е° к базису е, Т — матрица перехода от базиса е° к базису е!.
Чтобы доказать формулу (4.19), замечаем, что выполняются соотношения
Из этих соотношений получаем: е’ = е° Т2 = (еТ1 _1 )Т2 = е(Т1 _1 Т2), откуда следует, что Т^ 1 Т2 — матрица перехода от базиса е к базису е!, т.е. верно равенство (4.19).
Пример 4.9. Найти матрицу перехода от базиса е = (ei,62) к базису е’ = (ефе^), где [е[]е = (2,1) т , [е’2]е = (3,2) т .
Решение. Здесь векторы нового базиса заданы координатами в старом базисе. Поэтому сразу можно составить искомую матрицу Т из координатных столбцов векторов е[ и е’2:
Пример 4.10. Найти матрицу’ перехода от базиса е = (ei,62, ез) к базису е’ = (еф е’2,е’3), где векторы заданы своими координатами в некотором базисе: е = (1,1,1) т , 62 = (1,2,3) т , ез = (1,0,1) т , е = (-1,0,1) т , е’2 = (1,3, 3) т , е’3 = (1,-1,-1) т .
Решение. Составим векторное равенство
При j = 1 это равенство принимает вид:
Это равенство приводит к системе
из которой находим: а. = —2, од = 1, аз = 0. Следовательно, е[ = —2 е +б2- Аналогично при j = 2 и j = 3 получаем е(> = 61+62 — 63,63 = ei — 62 + ез. Из коэффициентов полученных разложений записываем матрицу перехода
Можно также этот ответ получить по формуле (4.19). Дли этого, пользуясь координатами векторов, записываем матрицы перехода
Пример 4.11. В линейном пространстве Р^х] многочленов не выше второй степени с действительными коэффициентами даны два базиса: е = (е!,е2,ез), где е = 1, ег = х, ез = х 2 , и е’ = (e’l5 е’2, е’3), где е[ = 1, е’2 — х — 1, е’3 — (х — I) 2 . Найти матрицу перехода Т от базиса е к базису е’.
🎦 Видео
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Образуют ли данные векторы базисСкачать
Как разложить вектор по базису - bezbotvyСкачать
Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 3Скачать
Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 1Скачать
Решение, убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 9Скачать
Разложение вектора по базису. 9 класс.Скачать
Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 2Скачать
Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать
Найдите разложение вектора по векторам (базису)Скачать
Высшая математика. Линейные пространства. Векторы. БазисСкачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Координаты вектора в пространстве. 11 класс.Скачать
Базис. Разложение вектора по базису.Скачать
Векторы. Метод координат. Вебинар | МатематикаСкачать
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать
Векторы #3: многомерные системы координат, базисные векторыСкачать
Базис и матрица перехода. Координаты вектора в разных базисах.Скачать