Векторы a b c единичные a b 30 a c 45

Видео:Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

Скалярное произведение векторов

Скалярное произведение векторов также является скалярной величиной, вычислить ее значение можно, воспользовавшись формулой a х b = |a| х |b| х cos α. В ином варианте вычисление произведения векторов на плоскости осуществляется попарным умножением значений координат векторов a • b = ax х bx + ay х by. Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 = 27.

В случае рассмотрения скалярного произведения векторов, которые располагаются в системе координат XYZ, a = и b = расчет выполняется по аналогичным плоскостному варианту формулам. a • b = ax х bx + ay х by + az х bz.

Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 + 2 х 5 = 37.

Общая для n-мерного пространства формула расчета будет иметь вид: a • b = a1 х b1 + a2 х b2 + . + an х bn.

Видео:Единичный векторСкачать

Единичный вектор

Векторное произведение векторов онлайн

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.

Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:

  • длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
    |c|=|[ab]|=|a||b|sinφ;(1)
  • вектор с ортогонален к каждому из векторов a и b;
  • вектор c направлен так, что тройка abc является правой.

Векторное произведение векторов обладает следующими свойствами:

  • [ab]=−[ba] ( антиперестановочность сомножителей);
  • [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
  • [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
  • [aa]=0 для любого вектора a.

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.

Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

S=|[ab]|=|a||b|sinφ.(2)

Видео:Задача 5. Компланарны ли векторы a, b, c.Скачать

Задача 5. Компланарны ли векторы a, b, c.

Векторное произведение векторов в декартовых координатах

Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами

a=<x1, y1, z1>, b=<x2, y2, z2>.

Тогда векторное произведение этих векторов имеет вид:

[ab]=<y1z2y2z1, z1x2z2x1, x1y2x2y1>.(3)

Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:

Векторы a b c единичные a b 30 a c 45

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:

Векторы a b c единичные a b 30 a c 45(4)
Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45

Из последнего равенства и соотношений (4), получим:

Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45

которая эквивалентна равенству (3).

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Векторное произведение векторов на примерах

Пример 1. Найти векторное произведение векторов [ab], где

Векторы a b c единичные a b 30 a c 45, Векторы a b c единичные a b 30 a c 45.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Векторы a b c единичные a b 30 a c 45.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

Векторы a b c единичные a b 30 a c 45.

Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: Векторы a b c единичные a b 30 a c 45, конечная точка вектора a: Векторы a b c единичные a b 30 a c 45, вектор b имеет вид Векторы a b c единичные a b 30 a c 45.

Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:

Векторы a b c единичные a b 30 a c 45.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

Векторы a b c единичные a b 30 a c 45.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45Векторы a b c единичные a b 30 a c 45.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

Видео:Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Скалярное произведение векторов

Векторы a b c единичные a b 30 a c 45

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Векторы a b c единичные a b 30 a c 45

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:№1041. Вычислите скалярное произведение векторов а и b, если | а |=2, | b |=3, а уголСкачать

№1041. Вычислите скалярное произведение векторов а и b, если | а |=2, | b |=3, а угол

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Векторы a b c единичные a b 30 a c 45

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Векторы a b c единичные a b 30 a c 45

Также векторы могут образовывать тупой угол. Это выглядит так:

Векторы a b c единичные a b 30 a c 45

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Векторы a b c единичные a b 30 a c 45

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Векторы a b c единичные a b 30 a c 45
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

    Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Векторы a b c единичные a b 30 a c 45

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Векторы a b c единичные a b 30 a c 45

    Векторы a b c единичные a b 30 a c 45

    то последнее равенство можно переписать так:

    Векторы a b c единичные a b 30 a c 45

    а по первому определению скалярного произведения имеем

    Векторы a b c единичные a b 30 a c 45

    Векторы a b c единичные a b 30 a c 45

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Векторы a b c единичные a b 30 a c 45
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

    ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

    Понятие вектора. Коллинеарные вектора. 9 класс.

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Векторы a b c единичные a b 30 a c 45

    Векторы a b c единичные a b 30 a c 45

    Векторы a b c единичные a b 30 a c 45

    Видео:Разложить вектор m по векторам a,b,cСкачать

    Разложить вектор m по векторам a,b,c

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Векторы a b c единичные a b 30 a c 45

    По свойству дистрибутивности скалярного произведения имеем

    Векторы a b c единичные a b 30 a c 45

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Векторы a b c единичные a b 30 a c 45

    В силу свойства коммутативности последнее выражение примет вид

    Векторы a b c единичные a b 30 a c 45

    Итак, после применения свойств скалярного произведения имеем

    Векторы a b c единичные a b 30 a c 45

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Векторы a b c единичные a b 30 a c 45

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Векторы a b c единичные a b 30 a c 45



      Введем систему координат.
      Векторы a b c единичные a b 30 a c 45

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Векторы a b c единичные a b 30 a c 45

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Векторы a b c единичные a b 30 a c 45
  • Найдем длины векторов →AB1 и →BC1:
    Векторы a b c единичные a b 30 a c 45
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Векторы a b c единичные a b 30 a c 45
  • Найдем косинус угла между прямыми AB1 и BC1:
    Векторы a b c единичные a b 30 a c 45
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Векторы a b c единичные a b 30 a c 45

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Векторы a b c единичные a b 30 a c 45

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Векторы a b c единичные a b 30 a c 45

    Вычислим скалярное произведение:

    Векторы a b c единичные a b 30 a c 45

    Вычислим длины векторов:

    Векторы a b c единичные a b 30 a c 45

    Найдем косинус угла:

    Векторы a b c единичные a b 30 a c 45

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Векторы a b c единичные a b 30 a c 45

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Векторы a b c единичные a b 30 a c 45

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    🔥 Видео

    №767. Дан треугольник ABC. Выразите через векторы а=АВ и b=АС следующие векторы:Скачать

    №767. Дан треугольник ABC. Выразите через векторы а=АВ и b=АС следующие векторы:

    9 класс, 18 урок, Скалярное произведение векторовСкачать

    9 класс, 18 урок, Скалярное произведение векторов

    2 37 Нахождение орта вектораСкачать

    2 37 Нахождение орта вектора

    Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)Скачать

    Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)

    Задача о векторах, построенных на медиане, биссектрисе и высоте треугольникаСкачать

    Задача о векторах, построенных на медиане, биссектрисе и высоте треугольника

    Угол между векторами. 9 класс.Скачать

    Угол между векторами. 9 класс.
    Поделиться или сохранить к себе: