Скалярное произведение векторов также является скалярной величиной, вычислить ее значение можно, воспользовавшись формулой a х b = |a| х |b| х cos α. В ином варианте вычисление произведения векторов на плоскости осуществляется попарным умножением значений координат векторов a • b = ax х bx + ay х by. Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 = 27.
В случае рассмотрения скалярного произведения векторов, которые располагаются в системе координат XYZ, a = и b = расчет выполняется по аналогичным плоскостному варианту формулам. a • b = ax х bx + ay х by + az х bz.
Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 + 2 х 5 = 37.
Общая для n-мерного пространства формула расчета будет иметь вид: a • b = a1 х b1 + a2 х b2 + . + an х bn.
- Векторное произведение векторов онлайн
- Предупреждение
- Векторное произведение векторов
- Геометрические свойства векторного произведения векторов
- Векторное произведение векторов в декартовых координатах
- Векторное произведение векторов на примерах
- Скалярное произведение векторов
- Основные определения
- Угол между векторами
- Скалярное произведение векторов
- Скалярное произведение в координатах
- Формулы скалярного произведения векторов заданных координатами
- Свойства скалярного произведения
- Примеры вычислений скалярного произведения
- 📽️ Видео
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Векторное произведение векторов онлайн
Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Орт вектора. Нормировать вектор. Найти единичный векторСкачать
Векторное произведение векторов
Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.
Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.
Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.
Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.
Определение 2 можно формулировать и по другому.
Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).
Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.
Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.
Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.
Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.
Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:
- длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|[ab]|=|a||b|sinφ; (1) - вектор с ортогонален к каждому из векторов a и b;
- вектор c направлен так, что тройка abc является правой.
Векторное произведение векторов обладает следующими свойствами:
- [ab]=−[ba] ( антиперестановочность сомножителей);
- [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
- [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
- [aa]=0 для любого вектора a.
Видео:Единичный векторСкачать
Геометрические свойства векторного произведения векторов
Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.
Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.
Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).
Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.
Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.
Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:
S=|[ab]|=|a||b|sinφ. | (2) |
Видео:Скалярное произведение векторов. 9 класс.Скачать
Векторное произведение векторов в декартовых координатах
Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами
a=<x1, y1, z1>, b=<x2, y2, z2>. |
Тогда векторное произведение этих векторов имеет вид:
[ab]=<y1z2—y2z1, z1x2−z2x1, x1y2−x2y1>. | (3) |
Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:
Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).
Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:
(4) |
Из последнего равенства и соотношений (4), получим:
которая эквивалентна равенству (3).
Видео:Векторы. Метод координат. Вебинар | МатематикаСкачать
Векторное произведение векторов на примерах
Пример 1. Найти векторное произведение векторов [ab], где
, . |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
. |
Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: , конечная точка вектора a: , вектор b имеет вид .
Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:
. |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
Видео:Угол между векторами | МатематикаСкачать
Скалярное произведение векторов
О чем эта статья:
11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Задача 5. Компланарны ли векторы a, b, c.Скачать
Основные определения
Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.
Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.
Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.
Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.
Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.
Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.
Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Угол между векторами
Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=
2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.
3. Если векторы направлены в разные стороны, тогда угол между ними 180°.
Также векторы могут образовывать тупой угол. Это выглядит так:
Видео:№1041. Вычислите скалярное произведение векторов а и b, если | а |=2, | b |=3, а уголСкачать
Скалярное произведение векторов
Определение скалярного произведения можно сформулировать двумя способами:
Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.
Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:
→a * →b = →|a| * →|b| * cosα
Что важно запомнить про геометрическую интерпретацию скалярного произведения:
- Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0.
- Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα
Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Скалярное произведение в координатах
Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.
То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by
А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz
Докажем это определение:
Сначала докажем равенства
для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.
Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)
Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)
Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
то последнее равенство можно переписать так:
а по первому определению скалярного произведения имеем