Вектор магнитной индукции в центре кругового витка

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Видео:14. Вектор магнитной индукции. Правило правого винта.Скачать

14. Вектор магнитной индукции. Правило правого винта.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Вектор магнитной индукции в центре кругового витка

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Вектор магнитной индукции в центре кругового витка

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

Вектор магнитной индукции в центре кругового витка

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Вектор магнитной индукции в центре кругового витка

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

Вектор магнитной индукции в центре кругового витка

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Вектор магнитной индукции в центре кругового витка

Способы обозначения направлений векторов:

ВверхВектор магнитной индукции в центре кругового витка
ВнизВектор магнитной индукции в центре кругового витка
ВлевоВектор магнитной индукции в центре кругового витка
ВправоВектор магнитной индукции в центре кругового витка
На нас перпендикулярно плоскости чертежаВектор магнитной индукции в центре кругового витка
От нас перпендикулярно плоскости чертежаВектор магнитной индукции в центре кругового витка

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Вектор магнитной индукции в центре кругового витка

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Вектор магнитной индукции в центре кругового витка

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Вектор магнитной индукции в центре кругового витка

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Вектор магнитной индукции в центре кругового витка

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Вектор магнитной индукции в центре кругового витка

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Вектор магнитной индукции в центре кругового витка

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Вектор магнитной индукции в центре кругового витка

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Видео:Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Вектор магнитной индукции в центре кругового витка

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Вектор магнитной индукции в центре кругового витка

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Вектор магнитной индукции в центре кругового витка

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Вектор магнитной индукции в центре кругового виткаНа рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции в центре кругового виткаМагнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции в центре кругового виткаНепосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Магнитное поле кругового тока

Вы будете перенаправлены на Автор24

Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.

Видео:ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока

Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):

где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.

Величину вектора $vec$ из выражения (1) найдем как:

где $ alpha $– угол между векторами $vec r$ и $vec l$ .

Конкретное направление $vec$ находят по правилу буравчика (правилу правой руки):

Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec$.

Магнитные поля подчиняются принципу суперпозиции:

Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:

$vec=sumlimits_^N vec_ left( 3 right). $

Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:

Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:

Готовые работы на аналогичную тему

  1. Выделить на проводнике с током элементарный отрезок $dl$.
  2. Записать для исследуемой точки поля закон Био – Савара – Лапласа.
  3. Определить направление элементарного поля $vec$ в избранной точке.
  4. Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).

Видео:Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | Инфоурок

Магнитное поле кругового тока в его центре

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$L=2πR$ — длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

$dvectimes vec=dvectimes vec+dvectimes vec(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L <dvectimes vec> =(ointlimits_L <dvec)timesvec> =0, left( 11 right),$

так как ( $ointlimits_L <dvec)=0.>$

Вычислим интеграл: $ointlimits_L <dvectimes vec.>$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L <dvectimes vec=ointlimits_L <vecRdl=vecR>> ointlimits_L <dl=vecR> 2pi R=2pi R^vecleft( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

где при записи окончательного результата мы учли, что:

Видео:Урок 171 (осн). Магнитное поле витка и катушки с токомСкачать

Урок 171 (осн). Магнитное поле витка и катушки с током

Кольца Гельмгольца

Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.

Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рассмотрим магнитное поле на оси этих колец.

Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).

Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):

Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.

Неоднородность в первом приближении характеризуют первой производной:

Если $z=fracquad$ , подставим в (15), имеем:

По условию для колец Гельмгольца, имеем: $d=R.$

На середине их общей оси ($z=frac)$, получаем:

Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 28 03 2021

Видео:Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)Скачать

Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)

Магнитное поле кругового тока

Рассмотрим магнитное поле постоянного тока /, текущего по проводу в форме окружности С радиуса а. Применим закон Био — Савара — Лапласа для определения магнитной индукции в центре кругового тока.

Вектор магнитной индукции в центре кругового витка

К расчету магнитного по^хя кругового тока

На рис. 6.2 изображены вектор dl, характеризующий произвольный малый

участок проводника с током, и вектор R , соединяющий этот участок с точкой О, в которой требуется определить магнитную инндукцию В . По определению векторного произведения из формулы (6.1)

следует, что вектор dB магнитной индукции поля, создаваемого рассматриваемым участком тока, перпендикулярен и

вектору dl , и вектору R . Таким образом, начало вектора dB находится в точке О, а сам вектор перпендикулярен плоскости контура С.

Так как векторы dl и R образуют прямой угол, модуль вектора dB согласно формуле (6.3) будет

Вектор магнитной индукции в центре кругового витка

Векторы dB магнитной индукции полей, создаваемых различными участками контура в точке О, совпадают по направлению. В таком случае их векторная сумма будет представлять собой вектор В , который имеет то же направление. При этом модуль этого вектора будет равен

сумме модулей векторов dB :

Вектор магнитной индукции в центре кругового витка

Интеграл от dl равен длине окружности:

Вектор магнитной индукции в центре кругового витка

Таким образом, придем к следующей формуле для магнитной индукции поля, создаваемого круговым током в центре окружности:

Вектор магнитной индукции в центре кругового витка

Модуль рт вектора магнитного момента кругового тока равен произведению силы тока на площадь круга: Вектор магнитной индукции в центре кругового витка

Используя это соотношение, выражение (6.5) можно записать так:

Вектор магнитной индукции в центре кругового витка Вектор магнитной индукции в центре кругового витка

В центре кругового витка с током вектор магнитной индукции направлен так же, как вектор магнитного момента рт. При этом справедливо соотношение

Отметим, что направление вектора магнитной индукции в центре кругового тока связано с направлением электрического тока правилом правого винта.

Линии в пространстве, к которым вектор В в любой точке является касательным, называются силовыми линиями магнитного поля. На рис. б.З изображены силовые линии магнитного поля кругового тока.

Вектор магнитной индукции в центре кругового витка

Рис. 6.8. Силовые линии магнитного поля кругового тока

💥 Видео

Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полей

Магнитное поле. Вектор магнитной индукцииСкачать

Магнитное поле. Вектор магнитной индукции

Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон

Урок 287. Индуктивность контура (катушки). Явление самоиндукцииСкачать

Урок 287. Индуктивность контура (катушки). Явление самоиндукции

Лекция 7-2 Поле на оси кругового токаСкачать

Лекция 7-2 Поле на оси кругового тока

Закон Био Савара Лапласа. Магнитное поле прямого и кругового тока.Скачать

Закон Био Савара Лапласа. Магнитное поле прямого и кругового тока.

Контур с током в магнитном поле. 10 класс.Скачать

Контур с током в магнитном поле. 10 класс.

Линии магнитной индукцииСкачать

Линии магнитной индукции

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила ЛоренцаСкачать

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила Лоренца
Поделиться или сохранить к себе: