Вектор магнитной индукции поля созданного двумя

Вектор магнитной индукции поля созданного двумя

Модуль вектора магнитной индукции равен :

1. отношению максимального значения силы тока в проводнике к силе, действующей на прямой проводник с током и его длине

2. произведению максимального значения силы, действующей на прямой проводник с током на силу тока в проводнике и на его длину

3. отношению максимального значения силы, действующей на прямой проводник с током, к силе тока в проводнике

4. отношению максимального значения силы, действующей на прямой проводник с током, к силе тока в проводнике и его длине

Проводник с током расположен перпендикулярно плоскости. На каком рисунке линии магнитной индукции изображены правильно.

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Задание №13 ЕГЭ по физике

Задание №13 ЕГЭ по физике проверяет знание по теме «Электромагнетизм». В задачах данного типа необходимо решить задачи, связанные с электрическим или магнитным полем.

Вектор магнитной индукции поля созданного двумяНа рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них. Как направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор магнитной индукции в точке А, находящейся точно посередине между проводниками, если сила тока I2 во втором проводнике больше силы тока I1 в первом проводнике? Ответ запишите словом (словами).

Алгоритм решения

Решение

Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по направлению тока в первом проводнике. Тогда получим, что силовые линии магнитного поля направлены против хода часовой стрелки. Поэтому вектор → B 1 магнитной индукции в точке А направлен относительно рисунка вверх.

Поскольку во втором проводнике направление тока совпадает с направлением тока в первом проводнике, силовые линии создаваемого им магнитного поля тоже направлены против хода часов стрелки. Но так как точка А относительно этого проводника расположена не справа, а слева, то вектор → B 2 магнитной индукции в ней направлен вниз.

Вектор магнитной индукции поля созданного двумя

Поскольку сила тока во втором проводнике больше, он создает более сильное магнитное поле. Следовательно, модуль вектора → B 2 магнитной индукции больше модуля вектора → B 1 . Тогда вектор, являющийся их геометрической суммой, будет направлен вниз.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции поля созданного двумяКак направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I.

Алгоритм решения

Решение

На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор → B , равный геометрической сумме векторов магнитной индукции первого и второго проводников ( → B 1 и → B 2 ). Применим правило буравчика. Мысленно сопоставим острие буравчика с направлением тока в первом проводнике. Тогда направление вращения его ручки покажем, что силовые линии вокруг проводника 1 направляются относительно плоскости рисунка против хода часовой стрелки. Ток во втором проводнике направлен противоположно току в первом. Следовательно, его силовые линии направлены относительно плоскости рисунка по часовой стрелке.

Вектор магнитной индукции поля созданного двумя

В точке А вектор → B 1 направлен в сторону от наблюдателя, а вектор → B 2 — к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор → B направлен к наблюдателю.

Теперь применим правило левой руки. Расположим ее так, чтобы четыре пальца были направлены в сторону течения тока в третьем проводнике. Ладонь расположим так, чтобы результирующий вектор → B входил в ладонь. Теперь отставим большой палец на 90 градусов. Относительно рисунка он покажет «вверх». Следовательно, сила Ампера → F А , действующая на третий проводник, направлена вверх.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции поля созданного двумяПротон движется в однородном магнитном поле со скоростью υ , направленной перпендикулярно вектору магнитной индукции B (см. рисунок). Как направлена сила Лоренца, действующая на протон?

Алгоритм решения

  1. Определить, каким способом можно найти направлений силы Лоренца, действующей на протон.
  2. Применить правила и найти направление силы Лоренца.

Решение

Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут направлены вниз. Теперь развернем ладонь так, чтобы в нее входили линии магнитной индукции. Теперь отклоним на 90 градусов большой палец. Он будет направлен от плоскости рисунка к нам. Это и есть направление силы Лоренца, действующей на протон.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции поля созданного двумяНа рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции поля созданного двумяНа рисунке показаны сечения двух параллельных прямых длинных проводников и направления токов в них. Сила тока в проводниках одинакова. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции созданного проводниками магнитного поля в точке А, расположенной на равном расстоянии от проводников? Ответ запишите словом (словами).

Алгоритм решения

Решение

Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по направлению тока в первом проводнике. Тогда получим, что силовые линии магнитного поля направлены против хода часовой стрелки. Поэтому вектор → B 1 магнитной индукции в точке А направлен относительно рисунка вверх.

Поскольку во втором проводнике направление тока противоположно направлено току в первом проводнике, силовые линии создаваемого им магнитного поля направлены по ходу часовой стрелки. Но так как точка А относительно этого проводника расположена не справа, а слева, то вектор → B 2 магнитной индукции в ней тоже направлен вверх.

Вектор магнитной индукции поля созданного двумя

Поскольку сила тока в обоих проводниках одинаковая, результирующий вектор магнитной индукции в точке А равен удвоенному вектору магнитной индукции поля, создаваемого каждым из этих проводников. В этом случае он направлен вверх так же как векторы → B 1 и → B 2 .

pазбирался: Алиса Никитина | обсудить разбор | оценить

Вектор магнитной индукции поля созданного двумяНа рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них. Сила тока I1 в первом проводнике больше силы тока I2 во втором. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля этих проводников в точке А, расположенной точно посередине между проводниками? Ответ запишите словом (словами).

Алгоритм решения

Решение

Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по направлению тока в первом проводнике. Тогда получим, что силовые линии магнитного поля направлены против хода часовой стрелки. Поэтому вектор → B 1 магнитной индукции в точке А направлен относительно рисунка вверх.

Поскольку во втором проводнике направление тока совпадает с направлением тока в первом проводнике, силовые линии создаваемого им магнитного поля тоже направлены против хода часовой стрелки. Но так как точка А относительно этого проводника расположена не справа, а слева, то вектор → B 2 магнитной индукции в ней направлен вниз.

Вектор магнитной индукции поля созданного двумя

Поскольку сила тока в первом проводнике больше, он создает более сильное магнитное поле. Следовательно, модуль вектора → B 1 магнитной индукции больше модуля вектора → B 2 . Тогда вектор, являющийся их геометрической суммой, будет направлен вверх.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В однородном электрическом поле, вектор напряжённости которого направлен горизонтально, на шёлковых нитях одинаковой длины подвешены два шарика, заряды которых одинаковы. Масса первого шарика больше массы второго. Какое из утверждений правильно?

а) Угол отклонения нити первого шарика больше угла отклонения второго.

б) Угол отклонения нити первого шарика меньше угла отклонения второго.

в) Углы отклонения нитей шариков одинаковы.

Видео:Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Магнитное поле. Электромагнитная индукция

Магнитное поле — форма материи, посредством которой осуществляется связь и взаимодействие между движущимися электрическими зарядами в вакууме и веществе.

Любой движущийся электрический заряд создает вокруг себя магнитное поле. Механизм магнитных явлений объясняется взаимодействием движущихся электрических зарядов.

Основные свойства магнитного поля:

  • а) магнитное поле создается электрическими зарядами (движущимся зарядами), намагниченными телами (магнитами) и переменным во времени электрическим полем;
  • б) магнитное поле непрерывно в пространстве и действует только на движущиеся электрические заряды (в отличие от электрического поля). Оно также действует на покоящиеся и движущиеся намагниченные тела;
  • в) разноименные полюсы магнитов притягиваются, одноименные — отталкиваются. Силовой характеристикой магнитного поля является магнитная индукция В.

Магнитная индукция — векторная величина, модуль которой определяется отношением максимального значения силы Fmax, действующей со стороны магнитного поля на прямой проводник с током, к силе этого тока I в проводнике и его длине I:

Вектор магнитной индукции поля созданного двумя

Единица магнитной индукции: тесла; 1 Тл = 1 Н/(А-м).

Для определения направления вектора магнитной индукции используется ориентирующее действие магнитного поля на малую рамку (контур) с током. За направление действия магнитной индукции В в данной точке принимается направление, вдоль которого располагается положительная нормаль п к свободно подвешенной рамке с током (замкнутый плоский контур с током), или направление, совпадающее с направлением, указываемым северным полюсом магнитной стрелки, помещенной в данную точку поля (рис. 4.26). Положительное направление нормали п к контуру с током определяется правилом буравчика (или правого винта): положительная нормаль направлена в сторону, куда перемещался бы буравчик с правой резьбой, если рукоятку вращать по направлению тока в контуре (рамке).

Принцип суперпозиции магнитных полей: магнитная индукция В результирующего поля равна векторной сумме магнитных индукций Въ В2. В„ складываемых полей, образованных в этой точке каждым полем в отдельности:

Вектор магнитной индукции поля созданного двумя

где п — число токов, создающих поля.

В частном случае наложения двух магнитных полей, создаваемых двумя проводниками с токами Д и 12, которые текут в одном направлении и направлены перпендикулярно от нас, результирующий вектор В в точке А равен В = Вг + В2, а модуль

магнитной индукции B = + В| -г 2В, В2 cos а, где а — угол

между векторами В] и В2 (рис. 4.27).

Для графического изображения магнитных полей используется представление о линиях магнитной индукции.

Вектор магнитной индукции поля созданного двумя Вектор магнитной индукции поля созданного двумя

Линии магнитной индукции (силовые линии магнитного поля) — воображаемые линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции В в этих точках.

Линии магнитной индукции всегда замкнуты, либо идут из бесконечности. Замкнутость линий означает, что в природе отсутствуют свободные магнитные заряды.

Линии магнитной индукции прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) величине модуля вектора индукции магнитного поля в данном месте. Поля с замкнутыми силовыми линиями называются вихревыми полями. Заметим, что линии напряженности электростатического поля являются разомкнутыми.

Направление вектора магнитной индукции поля, создаваемого бесконечно длинным прямым проводником с током, определяется правилом буравчика (правилом правого винта): если поступательного движение буравчика с правой резьбой совпадает с направлением тока в проводнике, то направление движения конца рукоятки буравчика укажет направление вектора магнитной индукции (рис. 4.28).

Вектор магнитной индукции поля созданного двумя

Еще одно правило (правило правой руки) для определения направления вектора магнитной индукции бесконечно длинного прямого проводника с током: мысленно пальцами правой руки обхватить проводник с током так, чтобы большой палец указывал направление тока. Тогда полусогнутые пальцы укажут направление вектора магнитной индукции В.

Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током:

Вектор магнитной индукции поля созданного двумя

где |д0 — магнитная постоянная; р — магнитная проницаемость среды; г — расстояние от оси проводника.

Направление вектора магнитной индукции, создаваемого проводником в форме кругового витка с током (рис. 4.29), определяют по правилу правой руки или по правилу буравчика: если направление вращения ручки буравчика совпадает с направлением тока в витке, то направление его поступательного движения укажет направление индукции магнитного поля.

Вектор магнитной индукции поля созданного двумя

Магнитная индукция поля в центре кругового витка с радиусом г, по которому протекает ток I:

Вектор магнитной индукции поля созданного двумя

На рис. 4.30 и 4.31 приведены, соответственно, линии магнитной индукции поля соленоида и поля полосового (постоянного) магнита.

Вектор магнитной индукции поля созданного двумя

Индукция магнитного поля в центре соленоида (вдали от краев соленоида) равна:

Вектор магнитной индукции поля созданного двумя

где N — число витков; I — длина соленоида; п = N/1 — число витков на единицу длины соленоида; I — сила тока в одном витке.

Взаимодействие параллельных проводников

Сила Ампера — сила, действующая на прямолинейный проводник с током, помещенный в магнитное поле.

Закон Ампера: модуль силы Ампера равен произведению силы тока I, протекающего в проводнике, на модуль вектора магнитной индукции В, на длину проводника I и на синус угла а между вектором В и проводником с током:

Вектор магнитной индукции поля созданного двумя

или в векторной форме

Вектор магнитной индукции поля созданного двумя

Вектор силы Ампера перпендикулярен плоскости, в которой лежит вектор магнитной индукции В и проводник с током.

Модуль силы Ампера FA зависит от составляющей вектора В, перпендикулярной проводнику: В L = Bsina (рис. 4.32, а). Тогда выражение для силы Ампера примет вид:

Вектор магнитной индукции поля созданного двумя

Направление силы Ампера подчиняется правилу правого буравчика: при вращении рукоятки буравчика от направления

Вектор магнитной индукции поля созданного двумя Вектор магнитной индукции поля созданного двумя

тока к вектору В по наименьшему углу поступательное движение буравчика происходит в направлении силы РА.

Направление силы Ампера можно определить и по правилу левой руки (рис. 4.32, б): если ладонь левой руки расположить так, чтобы в нее входила перпендикулярная к проводнику составляющая В | вектора индукции В, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление силы Ампера.

Между двумя параллельными прямолинейными проводниками возникает сила взаимодействия: проводники притягиваются друг к другу, если по ним протекают токи и 12 одного направления (рис. 4.33, а), с токами разного направления — отталкиваются (рис. 4.33, б).

Вектор магнитной индукции поля созданного двумя

Сила взаимодействия двух параллельных проводников

с токами 1Х и /2, расположенных на расстоянии d друг от друга, рассчитанная на отрезок проводника длиною I, выражается формулой (рис. 4.33)

🎦 Видео

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | Инфоурок

Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полей

14. Вектор магнитной индукции. Правило правого винта.Скачать

14. Вектор магнитной индукции. Правило правого винта.

Физика - Магнитное полеСкачать

Физика - Магнитное поле

Электромагнитная индукция. Простыми словамиСкачать

Электромагнитная индукция. Простыми словами

Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Галилео. Эксперимент. Электромагнитная индукцияСкачать

Галилео. Эксперимент. Электромагнитная индукция

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. Техноскул

Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | ИнфоурокСкачать

Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | Инфоурок

Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила ЛоренцаСкачать

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила Лоренца

Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)Скачать

Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)

Урок 270. Магнитное поле и его характеристикиСкачать

Урок 270. Магнитное поле и его характеристики

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"
Поделиться или сохранить к себе: