Напряженность магнитного поля на оси кругового тока (рис. 6.17-1), создаваемого элементом проводника Idl, равна
поскольку в данном случае
Рис. 6.17. Магнитное поле на оси кругового тока (слева) и электрическое поле на оси диполя (справа)
При интегрировании по витку вектор будет описывать конус, так что в результате «выживет» только компонента поля вдоль оси 0z. Поэтому достаточно просуммировать величину
выполняется с учетом того, что подынтегральная функция не зависит от переменной l, а
Соответственно, полная магнитная индукция на оси витка равна
В частности, в центре витка (h = 0) поле равно
На большом расстоянии от витка (h >> R) можно пренебречь единицей под радикалом в знаменателе. В результате получаем
Здесь мы использовали выражение для модуля магнитного момента витка Рm , равное произведению I на площадь витка Магнитное поле образует с круговым током правовинтовую систему, так что (6.13) можно записать в векторной форме
Для сравнения рассчитаем поле электрического диполя (рис. 6.17-2). Электрические поля от положительного и отрицательного зарядов равны, соответственно,
так что результирующее поле будет
На больших расстояниях (h >> l) имеем отсюда
Здесь мы использовали введенное в (3.5) понятие вектора электрического момента диполя . Поле Е параллельно вектору дипольного момента, так что (6.16) можно записать в векторной форме
Аналогия с (6.14) очевидна.
Силовые линии магнитного поля кругового витка с током показаны на рис. 6.18. и 6.19
Рис. 6.18. Силовые линии магнитного поля кругового витка с током на небольших расстояниях от провода
Рис. 6.19. Распределение силовых линий магнитного поля кругового витка с током в плоскости его оси симметрии.
Магнитный момент витка направлен по этой оси
На рис. 6.20 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг кругового витка с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.
Магнитные силовые линии для витка, ось которого лежит в плоскости пластинки, сгущаются внутри витка. Вблизи проводов они имеют кольцевую форму, а вдали от витка поле быстро спадает, так что опилки практически не ориентируются.
Рис. 6.20. Визуализация силовых линий магнитного поля вокруг кругового витка с током
Пример 1. Электрон в атоме водорода движется вокруг протона по окружности радиусом аB = 53 пм (эту величину называют радиусом Бора по имени одного из создателей квантовой механики, который первым вычислил радиус орбиты теоретически) (рис. 6.21). Найти силу эквивалентного кругового тока и магнитную индукцию В поля в центре окружности.
Рис. 6.21. Электрон в атоме водорода
Решение. Заряды электрона и протона одинаковы по величине (е) и противоположны по знаку. На электрон действует сила кулоновского притяжения протона, создающая центростремительное ускорение
откуда находим угловую скорость движения электрона по круговой орбите
Период обращения электрона вокруг ядра равен
Если представить себе воображаемую площадку, ортогональную траектории электрона, то за время Т через нее проходит заряд е. Поэтому сила эквивалентного тока равна
Скорость движения электрона равна v = аB = 2,18·10 6 м/с. Движущийся заряд создает в центре орбиты магнитное поле
Этот же результат можно получить с помощью выражения (6.12) для поля в центре витка с током, силу которого мы нашли выше
Пример 2. Бесконечно длинный тонкий проводник с током 50 А имеет кольцеобразную петлю радиусом 10 см (рис. 6.22). Найти магнитную индукцию в центре петли.
Рис. 6.22. Магнитное поле длинного проводника с круговой петлей
Решение. Магнитное поле в центре петли создается бесконечно длинным прямолинейным проводом и кольцевым витком. Поле от прямолинейного провода направлено ортогонально плоскости рисунка «на нас», его величина равна (см. (6.9))
Поле, создаваемое кольцеобразной частью проводника, имеет то же направление и равно (см. 6.12)
Суммарное поле в центре витка будет равно
Дополнительная информация
- Магнитное поле кругового тока
- Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока
- Готовые работы на аналогичную тему
- Магнитное поле кругового тока в его центре
- Кольца Гельмгольца
- Магнитное поле и его характеристики
- теория по физике 🧲 магнетизм
- Основные свойства магнитного поля
- Вектор магнитной индукции
- Напряженность магнитного поля
- Направление вектора магнитной индукции и способы его определения
- Магнитное поле прямолинейного тока
- Магнитное поле кругового тока
- Магнитное поле электромагнита (соленоида)
- Алгоритм определения полярности электромагнита
- 🎦 Видео
Видео:Лекция 7-2 Поле на оси кругового токаСкачать
Магнитное поле кругового тока
Вы будете перенаправлены на Автор24
Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.
Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать
Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока
Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):
где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.
Величину вектора $vec$ из выражения (1) найдем как:
где $ alpha $– угол между векторами $vec r$ и $vec l$ .
Конкретное направление $vec$ находят по правилу буравчика (правилу правой руки):
Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec$.
Магнитные поля подчиняются принципу суперпозиции:
Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:
$vec=sumlimits_^N vec_ left( 3 right). $
Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:
Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:
Готовые работы на аналогичную тему
- Выделить на проводнике с током элементарный отрезок $dl$.
- Записать для исследуемой точки поля закон Био – Савара – Лапласа.
- Определить направление элементарного поля $vec$ в избранной точке.
- Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).
Видео:ЭЛЕКТРИЧЕСТВО.ЛАБА 26. ОПРЕДЕЛЕНИЕ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ НА ОСИ КРУГОВОГО ТОКАСкачать
Магнитное поле кругового тока в его центре
Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ
Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.
Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:
Из рис.1 мы видим:
- что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
- элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.
Учитывая сказанное выражение (5) представим в виде:
Обезличивая витки с током, положим далее $dl_1=dl$.
Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:
$L=2πR$ — длина окружности витка.
Индукция магнитного поля кругового тока на его оси
Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).
Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ
Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:
$dvectimes vec=dvectimes vec+dvectimes vec(9).$
Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:
В выражении (10) при записи интеграла, мы учли, что величина вектора $vec$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:
$ointlimits_L <dvectimes vec> =(ointlimits_L <dvec)timesvec> =0, left( 11 right),$
так как ( $ointlimits_L <dvec)=0.>$
Вычислим интеграл: $ointlimits_L <dvectimes vec.>$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.
$ointlimits_L <dvectimes vec=ointlimits_L <vecRdl=vecR>> ointlimits_L <dl=vecR> 2pi R=2pi R^vecleft( 12 right)$.
Подставляем результаты интегрирования из (12) в (10), имеем:
где при записи окончательного результата мы учли, что:
Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать
Кольца Гельмгольца
Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.
Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ
Рассмотрим магнитное поле на оси этих колец.
Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).
Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):
Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.
Неоднородность в первом приближении характеризуют первой производной:
Если $z=fracquad$ , подставим в (15), имеем:
По условию для колец Гельмгольца, имеем: $d=R.$
На середине их общей оси ($z=frac)$, получаем:
Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 28 03 2021
Видео:Закон Био Савара Лапласа. Магнитное поле прямого и кругового тока.Скачать
Магнитное поле и его характеристики
теория по физике 🧲 магнетизм
Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.
Основные свойства магнитного поля
- Магнитное поле порождается электрическим током (движущимися зарядами).
- Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
- Магнитное поле существует независимо от нас, от наших знаний о нем.
Видео:Физика Магнитное поле кругового токаСкачать
Вектор магнитной индукции
Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).
За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.
Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:
B = F A m a x I l . .
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.
Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.
Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.
Видео:Ось кругового тока. Био-СаварСкачать
Напряженность магнитного поля
Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.
μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.
Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .
Видео:Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать
Направление вектора магнитной индукции и способы его определения
Чтобы определить направление вектора магнитной индукции, нужно:
- Расположить в магнитном поле компас.
- Дождаться, когда магнитная стрелка займет устойчивое положение.
- Принять за направление вектора магнитной индукции направление стрелки компаса «север».
В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:
При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:
При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.
Отсюда следует, что:
- Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.
- Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.
Способы обозначения направлений векторов:
Вверх | |
Вниз | |
Влево | |
Вправо | |
На нас перпендикулярно плоскости чертежа | |
От нас перпендикулярно плоскости чертежа |
Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?
Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.
Видео:Магнитное поле. Вектор магнитной индукцииСкачать
Магнитное поле прямолинейного тока
Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:
Правило буравчика (правой руки)
Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.
Модуль вектора магнитной индукции на расстоянии r от оси проводника:
B = μ μ 0 I 2 π r . .
Магнитное поле кругового тока
Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.
Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:
Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.
Модуль вектора магнитной индукции в центре витка, радиус которого равен R:
Модуль напряженности в центре витка:
Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?
Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.
Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать
Магнитное поле электромагнита (соленоида)
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.
Число витков в соленоиде N определяется формулой:
l — длина соленоида, d — диаметр проволоки.
Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.
Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.
Модуль вектора магнитной индукции в центральной области соленоида:
B = μ μ 0 I N l . . = μ μ 0 I d . .
Модуль напряженности магнитного поля в центральной части соленоида:
H = I N l . . = I d . .
Алгоритм определения полярности электромагнита
- Определить полярность источника.
- Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
- Определить направление вектора магнитной индукции.
- Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).
Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.
Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.
На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен
а) вертикально вверх в плоскости витка
б) вертикально вниз в плоскости витка
в) вправо перпендикулярно плоскости витка
г) влево перпендикулярно плоскости витка
Алгоритм решения
Решение
По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.
Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.
Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?
а) повернётся на 180°
б) повернётся на 90° по часовой стрелке
в) повернётся на 90° против часовой стрелки
г) останется в прежнем положении
Алгоритм решения
- Вспомнить, как взаимодействуют магниты.
- Определить исходное положение полюсов.
- Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.
Решение
Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
- Определить направление тока в соленоиде.
- Определить полюса соленоида.
- Установить, как будет взаимодействовать соленоид с магнитом.
- Установить, как будет себя вести магнит после замыкания электрической цепи.
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор | оценить
🎦 Видео
Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)Скачать
Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать
Урок 171 (осн). Магнитное поле витка и катушки с токомСкачать
Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать
Физика - Магнитное полеСкачать
14. Вектор магнитной индукции. Правило правого винта.Скачать
ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать
Линии магнитной индукции наглядно. Правило правой рукиСкачать
Контур с током в магнитном поле. 10 класс.Скачать
Рамка с током в магнитном поле. 8 класс.Скачать