В заключение рассмотрим меру скалярного поля, называемую градиентом, что в переводе с латинского означает шагающий или растущий. Термин впервые появился в метеорологии, а в математику и физику был введен Джеймсом Максвеллом, который предложил его обозначение в виде — grad.
Градиент — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой физической величины, значение которой меняется от одной точки скалярного поля к другой, а по величине (модулю) равный быстроте роста этой величины в этом направлении.
Для раскрытия физического смысла градиента, рассмотрим пример скалярного поля, в котором изменяется один параметр — высота поверхности земли над уровнем моря (см. рис. 2.7). Тогда градиент в каждой точке поверхности будет показывать «направление самого крутого подъема», и своей величиной характеризовать крутизну склона.
Рисунок 2.7 — Пример скалярного поля и его градиента.
Из рисунка видно, что операция градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что векторы направлены «в горку» и тем длиннее, чем круче наклон.
С математической точки зрения градиент — это производная скалярной функции, определенной на векторном пространстве. Для случая трехмерного пространства градиентом скалярной функции
Использовав в качестве единичных векторов векторы (орты) еЛЛ- 110 осям прямоугольных декартовых координат, получаем
В общем, размерность вектора градиента определяется размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идет речь.
Математический смысл градиента любой скалярной функции/в том, что его скалярное произведение с бесконечно малым вектором перемещения dx дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена/, то есть линейную часть изменения / при смещении на dx. Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:
Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат лт.е. от природы параметров х вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат. В тоже время dx — это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, т.е. вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного) вектора, т.е. вектором, записанным в обычном базисе.
В различных отраслях физики используется понятие градиента различных физических полей. Например, напряженность электростатического поля есть минус градиент электрического потенциала, напряженность гравитационного поля (ускорение свободного падения) в классической теории гравитации есть минус градиент гравитационного потенциала. Консервативная сила в классической механике есть минус градиент потенциальной энергии.
- Теории поля с примерами решения и образцами выполнения
- Скалярное поле
- Производная по направлению
- Векторное поле
- Поток поля
- Дивергенция поля. Формула Остроградского-Гаусса
- Циркуляция поля
- Ротор поля. Формула Стокса
- Оператор Гамильтона
- Векторные дифференциальные операции второго порядка
- Некоторые свойства основных классов векторных полей
- Соленоидальное поле
- Потенциальное поле
- Гармоническое поле
- Нахождение градиента вектор-функции
- Градиент скалярной функции
- Представляющие функции
- Градиент вектор-функции
- Градиент функции идентичности
- Градиент комбинаций вектор-векторных функций
- Градиент векторных сумм
- Градиент комбинаций векторных функций правила цепочки
- 💥 Видео
Видео:Скалярные и векторные величины, основные определения.Скачать

Теории поля с примерами решения и образцами выполнения
Теория поля — крупный раздел физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля.
К рассмотрению скалярных и векторных полей приводят многие задачи физики, электротехники, математики, механики и других технических дисциплин. Изучение одних физических полей способствует изучению и других. Так, например, силы всемирного тяготения, магнитные, электрические силы — все они изменяются обратно пропорционально квадрату расстояния от своего источника; диффузия в растворах происходит по законам, общим с распространением тепла в различных средах; вид силовых магнитных линий напоминает картину обтекания препятствий жидкостью и т. д.
Математическим ядром теории поля являются такие понятия, как градиент, поток, потенциал, дивергенция, ротор, циркуляция и другие. Эти понятия важны и в усвоении основных идей математического анализа функций многих переменных.
Полем называется область V пространства, в каждой точке которой определено значение некоторой величины. Если каждой точке М этой области соответствует определенное число U = U(M), говорят, что в области определено (задано) скалярное поле (или функция точки). Иначе говоря, скалярное поле — это скалярная функция U(М) вместе с ее областью определения. Если же каждой точке М области пространства соответствует некоторый вектор 
Примерами скалярных полей могут быть поля температуры (воздуха, тела, …), атмосферного давления, плотности (массы, воздуха, …), электрического потенциала и т.д. Примерами векторных полей являются поле силы тяжести, поле скоростей частиц текущей жидкости (ветра), магнитное поле, поле плотности электрического тока и т. д.
Если функция 
Далее будем рассматривать только стационарные поля.
Если V — область трехмерного пространства, то скалярное поле U можно рассматривать как функцию трех переменных х, у, z (координат точки М):
(Наряду с обозначениями 

Если скалярная функция U (М) зависит только от двух переменных, например х и у, то соответствующее скалярное поле U(х; у) называют плоским.
Аналогично: вектор 
Вектор 
где P(x;y;z), Q(x;y;z ), R(x;y;z) — проекции вектора 

Векторное поле называется однородным, если 
В дальнейшем будем предполагать, что скалярные функции (U(x;y;z) — определяющая скалярное поле, P(x;y;z), Q(x;y;z) и R(x; у; z) — задающие векторное поле) непрерывны вместе со своими частными производными.
Пример:
Функция 


Пример:
Найти поле линейной скорости 

Решение:
Угловую скорость представим в виде вектора 
Построим радиус-вектор 
Численное значение линейной скорости 


Вектор скорости 



или
Поле линейных скоростей 
Видео:ГрадиентСкачать

Скалярное поле
Поверхности и линии уровня:
Рассмотрим скалярное поле, задаваемое функцией U = U(x,y,z). Для наглядного представления скалярного поля используют поверхности и линии уровня.
Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция U(М) принимает постоянное значение, т. е.
Давая в уравнении (70.1) величине с различные значения, получим различные поверхности уровня, которые в совокупности как бы расслаивают поле. Через каждую точку поля проходит только одна поверхность уровня. Ее уравнение можно найти путем подстановки координат точки в уравнение (70.1).
Для скалярного поля, образованного функцией
поверхностями уровня является множество концентрических сфер с центрами в начале координат: 

Для равномерно раскаленной нити поверхности уровня температурного поля (изотермические поверхности) представляют собой круговые цилиндры, общей осью которых служит нить.
В случае плоского поля U — U(х; у) равенство U(x; у) = с представляет собой уравнение линии уровня поля, т. е. линия уровня —это линия на плоскости Оху, в точках которой функция U (х; у) сохраняет постоянное значение.
В метеорологии, например, сети изобар и изотерм (линии одинаковых средних давлений и одинаковых средних температур) являются линиями уровня и представляют собой функции координат точек местности.
Линии уровня применяются в математике при исследовании поверхностей методом сечений (см. п. 12.9).
Производная по направлению
Для характеристики скорости изменения поля U =U(М) в заданном направлении введем понятие «производной по направлению».
Возьмем в пространстве, где задано поле U = U(x;y;z), некоторую точку М и найдем скорость изменения функции U при движении точки М в произвольном направлении 

Приращение функции U, возникающее при переходе от точки М к некоторой точке 

Производной от функции U = U(M) в точке М по направлению 
Производная по направлению 



где 

Переходя к пределу при 
В случае плоского поля U = U(x;y) имеем:
Формула (70.2) принимает вид:
Замечание:
Понятие производной по направлению является обобщением понятия частных производных 


Пример:
Найти производную функции 
Решение:
Находим вектор 
Находим частные производные функции и вычисляем их значения в точке М:
Следовательно, по формуле (70.2) имеем:
Поскольку jj^- Градиент скалярного поля и его свойства
В каком направлении 

Можно заметить, что правая часть равенства (70.2) представляет собой скалярное произведение единичного вектора
и некоторого вектора
Вектор, координатами которого являются значения частных производных функции U(x,y,z) в точке M(x;y,z), называют градиентом функции и обозначают gradU, т. е.
Отметим, что grad U есть векторная величина. Говорят: скалярное поле U порождает векторное поле градиента U. Теперь равенство (70.2) можно записать в виде
где 

Из формулы (70.3) сразу следует, что производная по направлению достигает наибольшего значения, когда 
В этом состоит физический смысл градиента. На указанном свойстве градиента основано его широкое применение в математике и других дисциплинах.
Приведем важные свойства градиента функции.
1.Градиент направлен по нормали к поверхности уровня, проходящей через данную точку.
Действительно, по любому направлению вдоль поверхности уровня 
Доказываются эти свойства на основании определения градиента. Докажем, например, последнее свойство. Имеем:
Замечание. Приведенные свойства градиента функции остаются справедливыми и для плоского поля.
Пример:
Найти наибольшую скорость возрастания функции
Решение:
Наибольшая скорость возрастания функции равна
Отметим, что функция U будет убывать с наибольшей скоростью 

Видео:Александр Чирцов: ротор, дивергенция и градиентСкачать

Векторное поле
Векторные линии поля:
Рассмотрим векторное поле, задаваемое вектором 
Векторной линией поля 

Это понятие для конкретных полей имеет ясный физический смысл. Например, в поле скоростей текущей жидкости векторными линиями будут линии, по которым движутся частицы жидкости (линии тока); для магнитного поля векторными (силовыми) линиями будут линии, выходящие из северного полюса и оканчивающиеся в южном.
Совокупность всех векторных линий поля, проходящих через некоторую замкнутую кривую, называется векторной трубкой.
Изучение векторного поля обычно начинают с изучения расположения его векторных линий. Векторные линии поля
описываются системой дифференциальных уравнений вида
Действительно, пусть PQ — векторная линия поля, 


Пример:
Найти векторные линии поля линейных скоростей тела, вращающегося с постоянной угловой скоростью 
Решение:
Это поле определено вектором 
Интегрируя, получим: 
Поток поля
Пусть векторное поле образовано вектором (71.1). Для наглядности будем считать 
Выберем определенную сторону поверхности S. Пусть 




Будем приближенно считать каждую площадку плоской, а вектор 







Точное значение искомого количества жидкости получим, взяв предел найденной суммы при неограниченном увеличении числа элементарных площадок и стремлении к нулю их размеров (диаметров 
Независимо от физического смысла поля 
Потоком вектора 
Рассмотрим различные формы записи потока вектора. Так как
где 

Иногда формулу (71.3) записывают в виде
где вектор 
— проекции вектора 

Используя взаимосвязь поверхностных интегралов I и II рода (см. формулу (58.8)), поток вектора можно записать как
Отметим, что поток К вектора а есть скалярная величина. Величина К равна объему жидкости, которая протекает через поверхность S за единицу времени. В этом состоит физический смысл потока (независимо от физического смысла поля).
Особый интерес представляет случай, когда поверхность замкнута и ограничивает некоторый объем V. Тогда поток вектора записывается в виде
В этом случае за направление вектора п обычно берут направление внешней нормали и говорят о потоке изнутри поверхности S (см. рис. 272).
Если векторное поле 



При этом если К > 0, то из области V вытекает больше жидкости, чем в нее втекает. Это означает, что внутри области имеются дополнительные источники.
Если К
Пример:
Найти поток вектора 
Решение:
Поток найдем методом проектирования на три координатные плоскости. Для этого воспользуемся формулой (71.5). В нашем случае Р = z, Q = —х, R = у. Имеем:
Расчленим этот поверхностный интеграл на три слагаемых, затем сведем их вычисление к вычислению двойных интегралов. Нормаль к верхней стороне треугольника образует с осью Ох тупой угол, с осью Оу — тупой, а с осью Oz — острый угол. (Единичный вектор данной плоскости есть 

Итак, 
В результате имеем:
Пример:
Найти поток радиус-вектора 
Решение:
Очевидно, что
т. к.
Дивергенция поля. Формула Остроградского-Гаусса
Важной характеристикой векторного поля (71.1) является так называемая дивергенция, характеризующая распределение и интенсивность источников и стоков поля.
Дивергенцией (или расходимостью) векторного поля
в точке М называется скаляр вида 

Отметим некоторые свойства дивергенции.
- Если
— постоянный вектор, то
где с = const.
т. е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых.
- Если U — скалярная функция,
— вектор, то
Эти свойства легко проверить, используя формулу (71.6). Докажем, например, справедливость свойства 4.
Так как 
Используя понятия потока и дивергенции векторного поля, запишем известную в анализе (см. (58.9)) формулу Остроградского-Гаусса
в так называемой векторной форме.
Рассматривал область V, ограниченную замкнутой поверхностью S, в векторном поле (71.1), можно утверждать, что левая часть формулы (71.7) есть поток вектора 

(в котором она чаще всего и встречается).
Формула Остроградского-Гаусса означает, что поток векторного поля через замкнутую поверхность S (в направлении внешней нормали, т. е. изнутри) равен тройному интегралу от дивергенции этого поля по объему V, ограниченному данной поверхностью.
Используя формулу (71.8), можно дать другое определение дивергенции векторного поля 
По теореме о среднем для тройного интеграла (см. п. 54.1) имеем:
где 

Пусть поверхность S стягивается в точку. Тогда 

Дивергенцией векторного поля в точке М называется предел отношения потока поля через (замкнутую) поверхность S, окружающую точку М, к объему тела, ограниченного этой поверхностью, при условии, что вся поверхность стягивается в точку
Определение (71.9) дивергенции эквивалентно (можно показать) определению (71.6).
Как видно из определения, дивергенция векторного поля в точке является скалярной величиной. Она образует скалярное поле в данном векторном поле.
Исходя из физического смысла потока (обычно условно считают, что 



Понятно, что если в объеме V, ограниченном замкнутой поверхностью S, нет ни источников, ни стоков, то
Векторное поле, в каждой точке которого дивергенция поля равна нулю, т. е. 
Пример:
Найти дивергенцию поля линейных скоростей 

Решение:
Примем ось вращения жидкости за ось Oz. Тогда, как показано ранее (см. пример 69.2), 
Поле 
Циркуляция поля
Пусть векторное поле образовано вектором (71.1). Возьмем в этом поле некоторую замкнутую кривую L и выберем на ней определенное направление.
Пусть 


Криволинейный интеграл по замкнутому контуру L от скалярного произведения вектора 


Рассмотрим различные формы записи циркуляции. Так как
где 


Циркуляция С, записанная в виде (71.12) имеет простой физический смысл: если кривая L расположена в силовом поле, то циркуляция — это работа силы 
Отметим, что вдоль замкнутых векторных линий циркуляция отлична от нуля, потому что в каждой точке векторной линии скалярное произведение 

Пример:
Найти циркуляцию вектора поля линейных скоростей вращающегося тела (см. пример 69.2) 

Решение:
Будем считать, что направление нормали к плоскости 
где S — площадь поверхности, ограниченной кривой L (см. 56.17).
Заметим, что если нормаль к поверхности S образует угол 


Пример:
Вычислить циркуляцию векторного поля
вдоль периметра треугольника с вершинами A(1;0;0), В(0;1;0), С(0;0;1) (см. рис. 277).
Решение:
Согласно формуле (71.12), имеем:
На отрезке AB: x + у = 1, z = 0, следовательно,
На отрезке ВС: у + z = 1, х = 0, следовательно,
На отрезке СА: х + z = 1, у = 0, следовательно,
Ротор поля. Формула Стокса
Ротором (или вихрем) векторного поля
называется вектор, обозначаемый 
Формулу (71.13) можно записать с помощью символического определителя в виде, удобном для запоминания:
Отметим некоторые свойства ротора.
- Если
— постоянный вектор, то
т. е. ротор суммы двух векторов равен сумме роторов слагаемых.
- Если U — скалярная функция, а
— векторная, то
Эти свойства легко проверить, используя формулу (71.13). Покажем, например, справедливость свойства 3:
Используя понятия ротора и циркуляции, векторного поля, запишем известную в математическом анализе (см. п. 58.4) формулу Стокса:
Левая часть формулы (71.14) представляет собой циркуляцию вектора 


Следовательно, формулу Стокса можно записать в виде

Такое представление формулы Стокса называют ее векторной формой. В этой формуле положительное направление на контуре L и выбор стороны у поверхности S согласованы между собой так же, как в теореме Стокса.
Формула (71.15) показывает, что циркуляция вектора 

Используя формулу (71.14), можно дать другое определение ротора поля, эквивалентное первому и не зависящее от выбора координатной системы.
Для этого применим формулу Стокса (71.15) для достаточно малой плоской площадки S с контуром L, содержащей точку М.
По теореме о среднем для поверхностного интеграла (п. 57.1, свойство 7) имеем:
где 
Тогда формулу (71.15) можно записать в виде
Пусть контур L стягивается в точку М. Тогда 
Ротором вектора 
Как видно из определения, ротор вектора 
Дадим физическое истолкование понятия ротора векторного поля. Найдем ротор поля линейных скоростей твердого тела, вращающегося вокруг оси Oz с постоянной угловой скоростью (пример 69.2) 
По определению ротора
Ротор этого поля направлен параллельно оси вращения, его модуль равен удвоенной угловой скорости вращения.
С точностью до числового множителя ротор поля скоростей 
Замечание:
Из определения (71.13) ротора вытекает, что направление ротора — это направление, вокруг которого циркуляция имеет наибольшее значение (плотность) по сравнению с циркуляцией вокруг любого направления, не совпадающего с нормалью к площадке S.
Так что связь между ротором и циркуляцией аналогична связи между градиентом и производной по направлению (см. п. 70.3).
Оператор Гамильтона
Векторные дифференциальные операции первого порядка:
Основными дифференциальными операциями (действиями) над скалярным полем U и векторным полем 

Эти операции удобно записывать с помощью так называемого оператора Гамильтона
Этот символический вектор называют также оператором 




Применяя оператор Гамильтона, получим дифференциальные операции первого порядка:
Оператор Гамильтона применяется для записи и других операций и для вывода различных формул в теории поля. При действиях с ним надо пользоваться правилами векторной алгебры и правилами дифференцирования.
В частности, производная по направлению (70.2) может быть записана в виде
где
Векторные дифференциальные операции второго порядка
После применения оператора Гамильтона к скалярному или векторному полю получается новое поле, к которому можно снова применить этот оператор. В результате получаются дифференциальные операции второго порядка. Нетрудно убедиться, что имеется лишь пять дифференциальных операций второго порядка:
(Понятно, что операция 


Запишем явные выражения для дифференциальных операций второго порядка, используя оператор Гамильтона. Заметим при этом, что оператор действует только на множитель, расположенный непосредственно за оператором.
Правая часть этого равенства называется оператором Лапласа скалярной функции U и обозначается 
Дифференциальное уравнение Лапласа 
Замечание. К равенству (72.1) можно прийти, введя в рассмотрение скалярный оператор дельта:
(который тоже называют оператором Лапласа).
2. 
4. 
так как двойное векторное произведение обладает свойством
Здесь 

Некоторые свойства основных классов векторных полей
Соленоидальное поле
Напомним, что векторное поле 
Примерами соленоидальных полей являются: поле линейных скоростей вращающегося твердого тела (см. пример 71.4); магнитное поле, создаваемое прямолинейным проводником, вдоль которого течет электрический ток, и другие.
Приведем некоторые свойства соленоидального поля.
- В соленоидальном поле
поток вектора через любую замкнутую поверхность равен нулю. Это свойство непосредственно вытекает из формулы (71.8). Таким образом, соленоидальное поле не имеет источников и стоков.
- Соленоидальное поле является полем ротора некоторого векторного поля, т. е. если
, то существует такое поле
, что
. Вектор
называется векторным потенциалом поля
.
Любое из свойств 1-2 можно было бы взять в качестве определения соленоидального поля.
Доказывать свойство 2 не будем. Отметим лишь, что обратное утверждение — поле ротора векторного поля есть соленоидальное — нами доказано (выше мы показали, что 
3. В соленоидальном поле 
Рассмотрим векторную трубку между двумя ее произвольными сечениями 

где n — внешняя нормаль.
Так как на боковой поверхности векторной трубки нормаль п перпендикулярна к векторам поля, то 
Переменив направление нормали на площадке 

В поле скоростей текущей жидкости полученный результат означает, что количество жидкости, втекающей в трубку за единицу времени, равно количеству жидкости, вытекающей из нее.
Потенциальное поле
Векторное поле 

Приведем основные свойства потенциального поля.
Свойство 1. Циркуляция потенциального поля 
Это непосредственно вытекает из формулы (71.14). Следовательно,
В частности, для силового потенциального поля это означает, что работа силы по любому замкнутому контуру равна нулю; в поле скоростей текущей жидкости равенство С = 0 означает, что в потоке нет замкнутых струек, т. е. нет водоворотов.
Свойство 2. В потенциальном поле 




Это свойство вытекает из свойства 1. Действительно, взяв в поле две точки 


Учитывая свойства криволинейного интеграла, получаем:
Свойство 3. Потенциальное поле является полем градиента некоторой скалярной функции U(x; y; z), т. е. если 
Из равенства 

Отсюда: 
т. е. вектор поля 
Замечание. Из равенства rot grad U = 0 следует обратное утверждение — поле градиента скалярной функции U = U(x;y; z) является потенциальным.
Из равенства 
где 
Произвольное же векторное поле требует задания трех скалярных функций (P(x;y;z), Q(x;y;z), R(x;y,z) — проекции вектора поля на оси координат).
Замечание. Определение потенциального поля может быть дано иначе — векторное поле 


Пример:
Установить потенциальность поля
и найти его потенциал.
Решение:
Следовательно, поле вектора 
Найдем потенциал U по формуле (73.1), выбирая в качестве фиксированной точки начало координат, т. е. 
Гармоническое поле
Векторное поле 
Примером гармонического поля является поле линейных скоростей стационарного безвихревого потока жидкости при отсутствии в нем источников и стоков.
Так как поле 

Но так как поле одновременно и соленоидальное, то
или, что то же самое,
т. е. потенциальная функция U гармонического поля а является решением дифференциального уравнения Лапласа. Такая функция называется, как уже упоминали, гармонической.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:




















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Нахождение градиента вектор-функции
Дата публикации Oct 20, 2018
ВЧасть 1Нам поставили задачу: вычислить градиент этой функции потерь:
Чтобы найти градиент, мы должны найти производную функцию. ВЧасть 2мы научились вычислять частную производную функции по каждой переменной. Однако большинство переменных в этой функции потерь являются векторами. Возможность найти частную производную векторных переменных особенно важна, поскольку нейронная сеть работает с большими объемами данных. Векторные и матричные операции — это простой способ представления операций с таким большим количеством данных. Как именно вы можете найти градиент вектор-функции?
Видео:Скалярное произведение векторов. 9 класс.Скачать

Градиент скалярной функции
Скажи, что у нас есть функция,f (x, y) = 3x²y, Наши частные производные:
Если мы организуем эти части в горизонтальный вектор, мы получимградиентизР (х, у), или∇ f (x, y):
6yxэто изменение вР (х, у)в отношении изменения вИкс, в то время как3x²это изменение вР (х, у)в отношении изменения вY,
Что происходит, когда у нас есть две функции? Давайте добавим еще одну функцию,g (x, y) = 2x + y⁸, Частные производные:
Таким образом, градиент g (x, y):
Видео:Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Представляющие функции
Когда у нас есть несколько функций с несколькими параметрами, часто полезно представлять их более простым способом. Мы можем объединить несколько параметров функций в один векторный аргумент,Иксэто выглядит следующим образом:
Следовательно,Р (х, у, г)станетF (x₁, x₂, x₃)который становитсяе (Икс).
Мы также можем объединить несколько функций в вектор, например так:
В настоящее время,у = F (X)гдеF (X)является вектором из [f₁ (Икс), f₂ (Икс), f₃ (Икс) . п (Икс)]
Для нашего предыдущего примера с двумя функциями,f (x, y) ⇒ f (Икс)а такжеg (x, y) ⇒ g (Икс).Здесь векторИкс= [x₁, x₂], гдеx₁ = х, а такжеx₂ = у, Чтобы упростить его еще больше, мы можем объединить наши функции: [f (Икс),г(Икс)] = [f₁ (Икс), f₂ (Иксзнак равноf (x) = y.
Зачастую количество функций и количество переменных будет одинаковым, поэтому для каждой переменной существует решение.
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

Градиент вектор-функции
Теперь, когда у нас есть две функции, как мы можем найти градиент обеих функций? Если мы организуем оба их градиента в одну матрицу, мы переместимся из векторного исчисления в матричное исчисление. Эта матрица и организация градиентов нескольких функций с несколькими переменными, известна какМатрица Якобиана,
Есть несколько способов представления якобиана. Этот макет, где мы укладываем градиенты по вертикали, известен какмакет числителя, но другие документы будут использоватьрасположение знаменателя, который просто переворачивает его по диагонали:
Видео:Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Градиент функции идентичности
Давайте возьмем функцию идентичности,у = ф (х) = х, гдеFi (Икс) = xiи найдите его градиент:
Так же, как мы создали наш предыдущий якобиан, мы можем найти градиенты каждой скалярной функции и сложить их вертикально, чтобы создать якобиан тождественной функции:
Поскольку это функция идентичности, f₁ (Икс) = x₁, f₂ (Икс) = х₂ и тд. Следовательно,
Частичная производная функции по переменной, которой нет в функции, равна нулю. Например, частная производная 2x² по y равна 0. Другими словами,
Поэтому все, что не на диагонали якобиана, становится равным нулю. Между тем, частная производная любой переменной по отношению к себе равна 1. Например, частная производнаяИксв отношенииИксравен 1. Следовательно, якобиан становится:
Видео:10. ФНП. Градиент и производная по направлению функции двух переменных.Скачать

Градиент комбинаций вектор-векторных функций
Элементарные бинарные операторыявляются операциями (такими как сложениевес+Иксиливес>Икскоторый возвращает вектор единиц и нулей), который применяет оператор последовательно, начиная с первого элемента обоих векторов, чтобы получить первый элемент вывода, затем второго элемента обоих векторов, чтобы получить второй элемент вывода… и так далее.
Эта статья представляет поэлементные бинарные операции с такими обозначениями:
Здесь ◯ означает любой поэлементный оператор (например, +), а не композицию функций.
Итак, как вы находите градиент поэлементной операции двух векторов?
Поскольку у нас есть два набора функций, нам нужны два якобиана, один из которых представляет градиент относительноИкси один по отношению квес:
Большинство арифметических операций нам понадобятся простые, поэтомуе (ш)часто просто векторвес, Другими словами,Fi (Wi) = Wi, Например, операцияW + хподходит к этой категории, так как она может быть представлена каке (ж) + д (х)гдеfi (wi) + gi (xi) = wi + xi.
При этом условии каждый элемент в двух якобианах упрощается до:
На диагонали i = j, поэтому существует значение для частной производной. Вне диагонали, однако, i ≠ j, поэтому частные производные становятся равными нулю:
Мы можем представить это более кратко как:
Попробуем найти градиент функцииW + х, Мы знаем, что все вне диагонали равно 0. Значения частичных по диагонали относительновеса такжеИксявляются:
Итак, оба якобиана имеют диагональ 1. Это выглядит знакомо . это матрица тождеств!
Давайте попробуем это с умножением:ш * х, Значения частностей по диагонали относительновеса такжеИксявляются:
Следовательно, градиент по отношению квесизш * хявляетсяDiag (Икс)в то время как градиент по отношению кИксизш * хявляетсяDiag (вес).
Применяя те же шаги для вычитания и деления, мы можем суммировать все это:
Видео:Дивергенция и ротор: Язык уравнений Максвелла, течения жидкости и большеСкачать

Градиент векторных сумм
Одной из наиболее распространенных операций в глубоком обучении является операция суммирования. Как мы можем найти градиент функцииу = сумма (Икс)?
у = сумма (Икс)также может быть представлен как:
Следовательно, градиент может быть представлен как:
А так как частная производная функции по переменной, которой нет в функции, равна нулю, ее можно дополнительно упростить следующим образом:
Обратите внимание, что результатом является горизонтальный вектор.
Как насчет градиентау = сумма (Иксг)? Единственное отличие состоит в том, что мы умножаем каждый частный с константой, z:
Хотя это является производной по отношению кИкс, производная по скаляруZэто просто число:
Видео:Неравномерная темперация и биения центра объектовСкачать

Градиент комбинаций векторных функций правила цепочки
ВЧасть 2мы узнали о правилах цепей с несколькими переменными. Однако это работает только для скаляров. Давайте посмотрим, как мы можем интегрировать это в векторные вычисления!
Давайте возьмем векторную функцию,Yзнак равное(Икс)и найти градиент. Давайте определим функцию как:
И то и другоеf₁ (х)а такжеf₂ (х)являются составными функциями. Введем промежуточные переменные дляf₁ (х)а такжеf₂ (х)и переписать нашу функцию:
Теперь мы можем использовать наше правило цепочки переменных, чтобы вычислить производную вектораY, Просто вычислите производнуюf₁ (х)а такжеf₂ (х)и поместите их один над другим:
Вуаля! У нас есть наш градиент. Однако мы пришли к нашему решению со скалярными правилами, просто сгруппировав числа в вектор. Есть ли способ представить правило цепи с несколькими переменными для векторов?
Прямо сейчас наш градиент вычисляется с помощью:
Обратите внимание, что первый член градиентов обоихf₁ (х)а такжеf₂ (х)включает частичноеg₁надИкси второй член градиентов обоихf₁ (х)а такжеf₂ (х)включает частичноеg₂надИкс Это как умножение матриц! Поэтому мы можем представить это как:
Давайте проверим наше новое представление правила цепочки векторов:
Мы получаем тот же ответ, что и скалярный подход! Если вместо одного параметраИксу нас есть векторный параметрИкснам просто нужно немного изменить наше правило, чтобы получить полное правило цепочки векторов:
В нашем примере выше,еэто чисто функцияг; то есть,фиявляется функциейсолдатно нетGJ(каждая функцияесоответствует ровно 1 функцииг),В этом случае все вне диагонали становится равным нулю, и:
Теперь у нас есть все части, которые мы находим в градиенте нейронной сети, с которой мы начали нашу серию:
Проверять, выписыватьсяЧасть 4чтобы узнать, как вычислить его производную!
Если вы еще этого не сделали, прочитайте части 1 и 2:
ЧитатьЧасть 4для грандиозного финала!
Скачать оригинал статьиВот,
Если вам понравилась эта статья, не забудьте оставить несколько хлопков! Оставьте комментарий ниже, если у вас есть какие-либо вопросы или предложения 🙂
💥 Видео
Оператор Набла. Градиент. Дивергенция. Ротор. Лапласиан.Скачать

Дивергенция векторного поляСкачать

Демидович №4424в: дивергенция произведения скаляра и вектораСкачать

Вектор-градиент (теория)Скачать

ГрадиентСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

Градиенты и частные производныеСкачать

Скалярные и векторные поля. ТемаСкачать

Демидович №4426: дивергенция градиента функции радиус-вектораСкачать











































































где с = const.
т. е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых.


























т. е. ротор суммы двух векторов равен сумме роторов слагаемых.






















, что
. Вектор 




























































