§7 Работа силы электростатического поля при перемещении заряда.
Потенциальный характер сил поля.
Циркуляция вектора напряженности
Рассмотрим электростатическое поле, создаваемое зарядом q . Пусть в нем перемещается пробный заряд q 0 . В любой точке поля на заряд q 0 действует сила
де — модуль силы, — орт радиус-вектора , определяющего положение заряда q 0 относительно заряда q . Так как сила меняется от точки к точке, то работу силы электростатического поля запишем как работу переменной силы:
Ввиду того, что рассматривали перемещение заряда из точки 1 в точку 2 по произвольной траектории, можно сделать вывод, что работа по перемещению точечного заряда в электростатическом поле не зависит от формы пути, а определяется лишь начальным и конечным положением заряда. Это свидетельствует о том, что электростатическое поле является потенциальным, а сила Кулона – консервативной силой. Работа по перемещению заряда в таком поле по замкнутому пути всегда рвана нулю.
— проекция на направление контура ?.
Учтем, что работа по замкнутому пути равно нулю
— ЦИРКУЛЯЦИЯ вектора напряженности.
Циркуляция вектора напряженности электростатического поля, взятая по произвольному замкнутому контуру всегда равна нулю.
§7 Потенциал.
Связь между напряженностью и потенциалом.
Градиент потенциала.
Эквипотенциальные поверхности
Поскольку электростатическое поле является потенциальным работа по перемещению заряда в таком поле может быть представлена, как разность потенциальных энергий заряда в начальной и конечной точках пути. (Работа равна уменьшению потенциальной энергии, или изменению потенциальной энергии, взятому со знаком минус.)
Постоянную определяют из условия, что при удалении заряда q 0 на бесконечность его потенциальная энергия должна быть равна нулю.
.
Различные пробные заряды q 0 i , помещенные в данную точку поля будут обладать в этой точке различными потенциальными энергиями:
…
Отношение W пот i к величине пробного заряда q 0 i , помещенного в данную точку поля является величиной постоянной для данной точки поля для всех пробных зарядов. Это отношение называется ПОТЕНЦИАЛОМ.
ПОТЕНЦИАЛ – энергетическая характеристика электрического поля. ПОТЕНЦИАЛ численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.
Работу по перемещению заряда можно представить в виде
.
Потенциал измеряется в Вольтах
ЭКВИПОТЕНЦИАЛЬНЫМИ ПОВЕРХНОСТЯМИ называются поверхности равного потенциала (φ = const ). Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.
Связь между напряженностью и потенциалом φ можно найти, исходя из того, что работу по перемещению заряда q на элементарном отрезке d ? можно представить как
С другой стороны
— градиент потенциала.
Напряженность поля равна градиенту потенциала, взятому со знаком минус.
Градиент потенциала показывает, как меняется потенциал на единицу длины. Градиент перпендикулярен функции и направлен в сторону возрастания функции. Следовательно, вектор напряженности перпендикулярен эквипотенциальной поверхности и направлен в сторону убывания потенциала.
Рассмотрим поле, создаваемое системой N точечных зарядов q 1 , q 2 , … qN . Расстояния от зарядов до данной точки поля равны r 1 , r 2 , … rN . Работа, совершаемая силами этого поля над зарядом q 0 , будет равна алгебраической сумме работ сил, каждого заряда в отдельности.
гле
Потенциал поля, создаваемого системой зарядов, определяется как алгебраическая сумма потенциалов, создаваемых в этой же точке каждым зарядом в отдельности.
§9 Вычисление разности потенциалов плоскости, двух плоскостей, сферы, шара, цилиндра
Используя связь между φ и определим разность потенциалов между двумя произвольными точками
Разность потенциалов поля равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда σ.
2. Разность потенциалов поля двух бесконечных параллельных разноименно заряженных плоскостей с поверхностной плотностью заряда σ.
Если х1 = 0; х2 = d , то или
3. Разность потенциалов поля равномерно заряженной сферической поверхности радиуса R .
Внутри сферической поверхности потенциал всюду одинаков и равен
4. Разность потенциалов поля объемно заряженного шара радиуса R с общим зарядом Q.
Вне шара r 1 , r 2 > R ,
Внутри шара
5. Разность потенциалов поля равномерно заряженного цилиндра (или бесконечно длинной нити).
r > R :
Видео:Потенциал электрического поля. 10 класс.Скачать
Градиент потенциала
Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.
Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.
Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.
В определении градиента существенны два положения:
1) Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.
2) Направление таково, что скалярная функция в этом направлении возрастает.
Для декартовой системы координат:
Скорость изменения потенциала в направлении оси Х, Y, Z:
; ;
Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х, взятой с обратным знаком. Аналогично для осей Y и Z.
; ; .
В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид:
.
А в сферической системе координат:
.
Дифференциальный оператор Гамильтона (оператор Набла)
Для сокращения записи операций над скалярными и векторными величинами употребляют дифференциальный оператор Гамильтона или оператор Набла:
Под дифференциальным оператором Гамильтона понимают сумму частных производных по 3-м координатным осям, умноженных на соответствующие единичные векторы (орты).
Применим оператор Гамильтона к потенциалу:
Правые части одинаковы, значит, будут одинаковы и левые части:
Оператор Гамильтона сочетает в себе как векторные, так и скалярные свойства и может быть применен к скалярным и векторным функциям.
Дата добавления: 2015-07-30 ; просмотров: 19610 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:27 [Полярная звезда] Градиент потенциалаСкачать
Градиент потенциальных характеристик, как его рассчитать и пример
градиент потенциала является вектором, который представляет отношение изменения электрического потенциала по отношению к расстоянию в каждой оси декартовой системы координат. Таким образом, вектор градиента потенциала указывает направление, в котором скорость изменения электрического потенциала больше, в зависимости от расстояния.
В свою очередь, модуль градиента потенциала отражает скорость изменения электрического потенциала в определенном направлении. Если значение этого известно в каждой точке пространственной области, то электрическое поле может быть получено из градиента потенциала.
Электрическое поле определяется как вектор, с которым оно имеет определенное направление и величину. Определяя направление, в котором электрический потенциал уменьшается быстрее, удаляясь от контрольной точки, и деля это значение на пройденное расстояние, получается величина электрического поля..
- 1 Характеристики
- 2 Как рассчитать?
- 3 Пример
- 3.1 Упражнение
- 4 Ссылки
Видео:Физика 10 класс (Урок№27 - Напряжённость и потенциал электростатического поля.Разность потенциалов.)Скачать
черты
Градиент потенциала представляет собой вектор, ограниченный конкретными пространственными координатами, который измеряет отношение изменения между электрическим потенциалом и расстоянием, пройденным этим потенциалом.
Наиболее выдающиеся характеристики градиента электрического потенциала подробно описаны ниже:
1- Потенциальный градиент — это вектор. Следовательно, он имеет определенную величину и направление.
2- Поскольку потенциальный градиент является вектором в пространстве, он имеет величины, адресованные по осям X (ширина), Y (высокая) и Z (глубина), если в качестве эталонной системы координат берется декартова система координат.
3- Этот вектор перпендикулярен эквипотенциальной поверхности в точке, в которой оценивается электрический потенциал.
4- Вектор градиента потенциала направлен в направлении максимального изменения функции электрического потенциала в любой точке..
5- Модуль градиента потенциала равен модулю, полученному из функции электрического потенциала по отношению к расстоянию, пройденному в направлении каждой из осей декартовой системы координат..
6- Потенциальный градиент имеет нулевое значение в стационарных точках (максимальная, минимальная и седловая точки).
7- В международной системе единиц (СИ) единицами измерения градиента потенциала являются вольт / метры.
8. Направление электрического поля такое же, в котором электрический потенциал уменьшает свою величину быстрее. В свою очередь, градиент потенциала указывает в направлении, в котором потенциал увеличивает свое значение по отношению к изменению положения. Тогда электрическое поле имеет то же значение градиента потенциала, но с противоположным знаком.
Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать
Как рассчитать?
Разность электрических потенциалов между двумя точками (точка 1 и точка 2) определяется следующим выражением:
V1: электрический потенциал в точке 1.
V2: электрический потенциал в точке 2.
E: величина электрического поля.
Ѳ: угол наклона вектора электрического поля, измеренного относительно системы координат.
Выражая указанную формулу дифференциальным способом, получаем следующее:
Коэффициент E * cos (Ѳ) относится к модулю компонента электрического поля в направлении dl. Пусть L — горизонтальная ось плоскости отсчета, тогда cos (Ѳ) = 1, вот так:
Далее, отношение между изменением электрического потенциала (dV) и изменением пройденного расстояния (ds) является модулем градиента потенциала для упомянутого компонента.
Из этого следует, что величина градиента электрического потенциала равна компоненте электрического поля в направлении исследования, но с противоположным знаком.
Однако, поскольку реальная среда является трехмерной, градиент потенциала в данной точке должен быть выражен как сумма трех пространственных компонентов на осях X, Y и Z декартовой системы..
Разбивая вектор электрического поля на три прямоугольных компонента, мы получаем следующее:
Если в плоскости имеется область, в которой электрический потенциал имеет одинаковое значение, частная производная этого параметра по каждой из декартовых координат будет равна нулю.
Таким образом, в точках, которые находятся на эквипотенциальных поверхностях, напряженность электрического поля будет иметь нулевую величину.
Наконец, вектор градиента потенциала может быть определен как точно такой же вектор электрического поля (по величине) с противоположным знаком. Таким образом, мы имеем следующее:
Видео:ГрадиентСкачать
пример
Из приведенных выше расчетов необходимо:
Теперь, прежде чем определять электрическое поле как функцию градиента потенциала или наоборот, сначала необходимо определить направление, в котором разность электрических потенциалов растет..
После этого определяется коэффициент изменения электрического потенциала и изменения пройденного расстояния..
Таким образом, мы получаем величину соответствующего электрического поля, которая равна величине градиента потенциала в этой координате.
осуществление
Есть две параллельные пластины, как показано на следующем рисунке.
Шаг 1
Направление роста электрического поля на декартовой системе координат определяется.
Электрическое поле растет только в горизонтальном направлении, учитывая расположение параллельных пластин. Следовательно, можно сделать вывод, что компоненты градиента потенциала на оси Y и оси Z равны нулю..
Шаг 2
Данные, представляющие интерес различаются.
— Разность потенциалов: dV = V2 — V1 = 90 В — 0 В => dV = 90 В.
— Разница в расстоянии: дх = 10 сантиметров.
Чтобы обеспечить соответствие единиц измерения, используемых в соответствии с Международной системой единиц, величины, не выраженные в СИ, должны быть соответственно преобразованы. Таким образом, 10 сантиметров равны 0,1 метра, и, наконец, dx = 0,1 м.
Шаг 3
Величина вектора градиента потенциала рассчитывается соответствующим образом.
📹 Видео
Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать
Вектор-градиент (теория)Скачать
Урок 229. Работа электрического поля. Потенциал. Электрическое напряжениеСкачать
НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать
Билет №03 "Потенциал"Скачать
Физика. Связь напряженности и потенциалаСкачать
Потенциал электростатического поля, разность потенциалов | Физика 10 класс #50 | ИнфоурокСкачать
44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать
Урок 222. Поток вектора напряженности электрического поляСкачать
3.1.5 Потенциал электростатического поляСкачать
Урок 218. Напряженность электрического поляСкачать
Связь напряженности и потенциала. ЭлектростатикаСкачать
Лекция 2-2 Потенциал - примерыСкачать
41. Основные понятия теории векторных полейСкачать
Александр Чирцов: ротор, дивергенция и градиентСкачать