Вектор функции дискретная математика

Булевы функции


Видео:Дискретная математика. Лекция 2: Функции и отображенияСкачать

Дискретная математика. Лекция 2: Функции и отображения

Содержание


Видео:Математика это не ИсламСкачать

Математика это не Ислам

1 Понятие булевой функции

В курсе математического анализа изучаются функции, определённые на числовой прямой или на отрезке числовой прямой или на (гипер-) плоскости и т.п. Так или иначе область определения – непрерывное множество. В курсе дискретной математики изучаться должны функции, область определения которых – дискретное множество * . Простейшим (но нетривиальным) таким множеством является множество, состоящее из двух элементов. * Так мы и приходим к понятию булевой функции.

Определение 1 (Булева функция). Булевой функцией от n аргументов называется функция f из n -ой степени множества в множество .

Иначе говоря, булева функция – это функция, и аргументы и значение которой принадлежит множеству . Множество мы будем в дальнейшем обозначать через B .

Булеву функцию от n аргументов можно рассматривать как n -местную алгебраическую операцию на множестве B . При этом алгебра W >, где W – множество всевозможных булевых функций, называется алгеброй логики .

Конечность области определения функции имеет важное преимущество – такие функции можно задавать перечислением значений при различных значениях аргументов. Для того, чтобы задать значение функции от n переменных, надо определить значения для каждого из 2 n наборов. Эти значения записывают в таблицу в порядке соответствующих двоичных чисел. В результате получается таблица следующего вида:

x 1x 2.x n- 1x nf
00.00f(0,0. 0,0)
00.01f(0,0. 0,1)
00.10f(0,0. 1,0)
00.11f(0,0. 1,1)
......
11.00f(1,1. 0,0)
11.01f(1,1. 0,1)
11.10f(1,1. 1,0)
11.11f(1,1. 1,1)

Раз у нас есть стандартный порядок записывания наборов, то для того, чтобы задать функцию, нам достаточно выписать значения f (0,0. 0,0) , f (0,0. 0,1) , f (0,0. 1,0) , f (0,0. 1,1). f (1,1. 0,0) , f (1,1. 0,1) , f (1,1. 1,0) , f (1,1. 1,1). Этот набор называют вектором значений функции .

Таким образом, различных функций n переменных столько, сколько различных двоичных наборов длины 2 n * . А их 2 в степени 2 n .

Множество B содержит два элемента – их можно рассматривать как булевы функции от нуля (пустого множества) переменных – константу 0 и константу 1 .

Функций от одной переменной четыре: это константа 0, константа 1, тождественная функция , т.е. функция, значение которой совпадает с аргументом и так называемая функция « отрицание ». Отрицание будем обозначать символом ¬ как унарную операцию. Приведём таблицы этих четырёх функций:

x0x¬ x1
00011
10101

Как видим, функции от некоторого числа переменных можно рассматривать как функции от большего числа переменных. При этом значения функции не меняется при изменении этих «добавочных» переменных. Такие переменные называются фиктивными , в отличие от остальных – существенных .

Определение 2 (Фиктивные и существенные переменные). Переменная x i называется фиктивной (несущественной) переменной функции f ( x 1 ,···,x n ), если f ( x 1 ,···,x i- 1 ,0 ,x i+ 1 ,···,x n ) = f ( x 1 ,···,x i- 1 ,1 ,x i+ 1 ,···,x n ) для любых значений x 1 ,···,x i- 1 ,x i+ 1 ,···,x n . Иначе переменная x i называется существенной .

Функций от двух аргументов шестнадцать. Наиболее употребимые из этих функций (только те, которые существенно зависят от обеих переменных) мы приводим в следующей таблице:

x 1x 2x 1 & x 2x 1 Ъ x 2x 1 Й x 2x 1 Е x 2x 1 є x 2x 1 | x 2
00001010
01011101
10010101
11111011

Эти функции записываются как бинарные операции в инфиксной нотации. x 1 & x 2 называется конъюнкцией , x 1 Ъ x 2 – дизъюнкцией , x 1 Й x 2 – импликацией , x 1 є x 2 – эквивалентностью , x 1 Е x 2 – суммой по модулю 2 , x 1 | x 2 – штрихом Шеффера .

Значения 0 и 1 часто интерпретируют как «ложь» и «истину». Тогда понятным становится название функции «отрицание» – она меняет «ложь» на «истину», а «истину» на «ложь». Отрицание читается как «не». Конъюнкция читается обычно как «и» – действительно, конъюнкция равна 1 тогда и только тогда, когда равны 1 и первая и вторая переменная. * Кроме x 1 & x 2 часто используют обозначение x 1 Щ x 2 или x 1 · x 2 или x 1 x 2 или min( x 1 ,x 2 ). Дизъюнкция читается «или» – дизъюнкция равна 1 тогда и только тогда, когда равны 1 первая или вторая переменная. * Импликация выражает факт, что из x 1 следует x 2 . * Импликацию часто также обозначают x 1 ® x 2 .

Видео:Дискретная математика. Видео 3. Полнота системы функций.Скачать

Дискретная математика. Видео 3. Полнота системы функций.

2 Суперпозиция функций

Определение 3 (Суперпозиция функций). Суперпозицией булевых функций f 0 и f 1 . f n называется функция f ( x 1 . x m ) = f 0 ( g 1 ( x 1 . x m ) . g k ( x 1 . x m )), где каждая из функций g i ( x 1 , . x m ) либо совпадает с одной из переменных (тождественная функция), либо – с одной из функций f 1 . f n .

Пример 1 (суперпозиция функций).

Функция f ( x,y ) = ¬ ( x & y ) является суперпозицией функций ¬ и &. Функция g ( x,y ) = x Е ( x Ъ y ) является суперпозицией функций Е и Ъ . Функция h ( x,y,z ) = ( x & y ) Е z является суперпозицией функций Е и &. Построим таблицы этих функций.

Суперпозицию ( x & y ) Е ( ¬x Ъ ¬y ) можно прочитать как « x и y плюс не x или не y ».

Следующие соотношения могут быть проверены прямым сравнением значений функций в левой и правой части соотношения на всевозможных наборах аргументов.

  1. x & y = y & x
  2. x Ъ y = y Ъ x
  3. x Е y = y Е x
  4. x & ( y & z ) = ( x & y ) & z
  5. x Ъ ( y Ъ z ) = ( x Ъ y ) Ъ z
  6. x Е ( y Е z ) = ( x Е y ) Е z
  7. x Ъ ( y & z ) = ( x Ъ y ) & ( x Ъ z )
  8. x & ( y Ъ z ) = ( x & y ) Ъ ( x & z )
  9. ¬¬x = x
  10. ¬ ( x & y ) = ¬x Ъ ¬y
  11. ¬ ( x Ъ y ) = ¬x & ¬y
  12. x & x = x
  13. x & ¬x = 0
  14. x & 0 = 0
  15. x & 1 = x
  16. x Ъ x = x
  17. x Ъ ¬x = 1
  18. x Ъ 0 = x
  19. x Ъ 1 = 1
  20. x Е y = ( x & ¬y ) Ъ ( ¬x & y )
  21. x Й y = ¬x Ъ y
  22. x є y = ( x & y ) Ъ ( ¬x & ¬y )

Видео:Булевы функцииСкачать

Булевы функции

3 Двойственные функции

Определение 4 (Двойственная функция). Функция g ( x 1 . x n ) = ¬f ( ¬x 1 . ¬x n ) называется двойственной функцией к функции f и обозначается f * .

Пример 2 (двойственные функции).

( x & y ) * = ¬ ( ¬x & ¬y ) = x Ъ y .

Предложение 1 (Двойственная к двойственной функции). Функция, двойственная к двойственной функции f равна самой функции f.

Доказательство. f * ( x 1 . x n ) * = ( ¬f ( ¬x 1 . ¬x n )) * = *
= ¬¬f ( ¬¬x 1 . ¬¬x n ) = *
= f ( x 1 . x n ) *

Рассмотрим, что происходит с таблицей двойственной функции. Замена набора ( x 1 . x n ) на ( ¬x 1 . ¬x n ) соответствует «переворачиванию» таблицы. Действительно, наборы ( x 1 . x n ) и ( ¬x 1 . ¬x n ) расположены симметрично относительно середины таблицы. Теперь остаётся применить операцию ¬ к результату функции, т.е. поменять 0 на 1 и 1 на 0. Т.о. вектор значений функции, двойственной к исходной, получается из вектора исходной функции переворачиванием и заменой 0 на 1, а 1 на 0.

Пример 3 (вектор двойственной функции).

Функции x & y и x Ъ y , задаваемые векторами значений (0,0,0,1) и (0,1,1,1) двойственны друг к другу. Также двойственными являются x Е y и x є y , задаваемые векторами (0,1,1,0) и (1,0,0,1). Каждая из функций x и ¬x (векторы (0,1) и (1,0) соответственно) двойственна сама себе.

Теорема 1 (Принцип двойственности). Функция, двойственная к суперпозиции функций, равна суперпозиции двойственных функций. Точнее: f 0 ( f 1 . f m ) * = f 0 * ( f 1 * . f m * )

Доказательство. f 0 ( f 1 ( x 1 . x n ) . f m ( x 1 . x n )) * =

= ¬f 0 ( f 1 ( ¬x 1 . ¬x n ) . f m ( ¬x 1 . ¬x n )) = *
= ¬f 0 ( ¬¬f 1 ( ¬x 1 . ¬x n ) . ¬¬f m ( ¬x 1 . ¬x n )) = *
= ¬f 0 ( ¬f 1 * ( x 1 . x n ) . ¬f m * ( x 1 . x n )) = *
= f 0 * ( f 1 * ( x 1 . x n ) . f m * ( x 1 . x n )) *

Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать

Что такое вектора? | Сущность Линейной Алгебры, глава 1

4 Разложение функции по переменным

x s =
м ¬x, если s =0
н
о x, если s =1
.

Теорема 2 (Разложение в дизъюнкцию). Любую функцию f ( x 1 . x m ) для любого n (1 Ј n Ј m ) можно представить в виде f ( x 1 . x m ) = x 1 s 1 & . & x n s n & f ( s 1 . s n ,x n+ 1 . x m )

Доказательство. Покажем, что для любого набора значений переменных ( x 1 . x n ,x n+ 1 . x m ) значения левой и правой частей совпадают. Возьмём фиксированный набор ( x 1 . x n ,x n+ 1 . x m ). Рассмотрим выражение x 1 s 1 & . & x n s n . Если одно из значений x i s i равно 0, то и всё выражение равно 0. Тогда и выражение x 1 s 1 & . & x n s n & f ( s 1 . s n ,x n+ 1 . x m ) равно 0. Единице же выражение x 1 s 1 & . & x n s n равно только в том случае, если s 1 = x 1 , . s n = x n . При этом f ( s 1 . s n ,x n+ 1 . x m ) = f ( x 1 . x n ,x n+ 1 . x m ) Таким образом, значение правой части всегда равно равно f ( x 1 . x m ), то есть значению левой части.

Теорема 3 (Разложение в конъюнкцию). Любую функцию f ( x 1 . x m ) для любого n (1 Ј n Ј m ) можно представить в виде f ( x 1 . x m ) = x 1 ¬ s 1 Ъ . Ъ x n ¬ s n Ъ f ( s 1 . s n ,x n+ 1 . x m )

Разложения по всем переменным дают суперпозицию конъюнкции, дизъюнкции и отрицания.

Следствие 1 (Совершенная дизъюнктивная нормальная форма).

Любая функция f может быть представлена в следующей форме: *

f ( x 1 . x m ) = x 1 s 1 & . & x m s m & f ( s 1 . s m ) = *
= x 1 s 1 & . & x m s m

Следствие 2 (Совершенная конъюнктивная нормальная форма).

Любая функция f может быть представлена в следующей форме: * f ( x 1 . x m ) = x 1 ¬ s 1 Ъ . Ъ x m ¬ s m

Таким образом, любая булева функция может быть представлена суперпозицией конъюнкции, дизъюнкции и отрицания. Разложение по всем переменным в дизъюнкцию называется совершенной дизъюнктивной нормальной формой функции, а в конъюнкцию – совершенной конъюнктивной нормальной формой . *

Совершенная дизъюнктивная и конъюнктивная нормальная формы дают способ представления булевой функции через суперпозицию конъюнкции, дизъюнкции и отрицания если у нас есть таблица значений функции.

Чтобы получить совершенную дизъюнктивную нормальную форму, надо взять все наборы, на которых значение функции равно 1 и записать для каждого из них конъюнкцию переменных и их отрицаний. Если в наборе значение переменной 0 – то переменную надо взять с отрицанием, если 1 – без отрицания. Из получившихся конъюнкций надо построить дизъюнкцию.

Чтобы получить совершенную конъюнктивную нормальную форму, надо взять все наборы, на которых значение функции равно 0 и записать для каждого из них дизъюнкцию переменных и их отрицаний. Если в наборе значение переменной 0 – то переменную надо взять без отрицания, если 1 – с отрицанием. Из получившихся дизъюнкций надо построить конъюнкцию.

Пример 4 (совершенная дизъюнктивная нормальная форма).

Построим совершенную дизъюнктивную нормальную форму функции, заданной следующей таблицей.

xyzf
0000
0010
0100
0111
1000
1011
1101
1111

Наборы, на которых функция равна 1 – это (0,1,1), (1,0,1), (1,1,0), (1,1,1). Первый набор даёт конъюнкцию ¬x & y & z , второй – x & ¬y & z , третий – x & y & ¬z , четвёртый – x & y & z . В результате получаем ( ¬x & y & z ) Ъ ( x & ¬y & z ) Ъ ( x & y & ¬z ) Ъ ( x & y & z ).

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Булевы функции и их представления

Булевы функции от n переменных

Булевы функции 1 В отечественной литературе их также часто называют функциями алгебры логики . названы в честь английского математика ХIХ века Дж. Буля, который впервые применил алгебраические методы для решения логических задач. Они образуют самый простой нетривиальный класс дискретных функций — их аргументы и значения могут принимать всего два значения (если мощность множества значений функции равна 1, то это тривиальная функция — константа !). С другой стороны, этот класс достаточно богат и его функции имеют много интересных свойств. Булевы функции находят применение в логике, электротехнике, многих разделах информатики.

Обозначим через B двухэлементное множество . Тогда

Вектор функции дискретная математика

Теорема 3.1. Вектор функции дискретная математика.

Доказательство.Действительно, по теореме 1.1 число функций из k -элементного множества A в m -элементное множество B равно m k . В нашем случае B= , а A = B n . Тогда m=2 и k= |B n | = 2 n . Отсюда следует утверждение теоремы.

Имеется несколько различных способов представления и интерпретации булевых функций . В этом разделе мы рассмотрим геометрическое и табличное представления , а также представление с помощью логических формул . В «Эквивалентность формул и нормальные формы» будет показано, как булевы функции можно представлять с помощью формул специального вида — дизъюнктивных и конъюнктивных нормальных форм и многочленов Жегалкина . Кроме того, в лекциях «Предварительные сведения» и «Индукция и комбинаторика» (курс «Введение в схемы, автоматы и алгоритмы») будет рассмотрено еще два способа представления булевых функций : логические схемы и упорядоченные бинарные диаграммы решений .

Геометрическое представление

Bn можно рассматривать как единичный n-мерный куб . Каждый набор из нулей и единиц длины n задает вершину этого куба. На рис. 3.1 представлены единичные кубы Bn при n=3,4 .

Вектор функции дискретная математика

При этом существует естественное взаимно однозначное соответствие между подмножествами вершин n-мерных единичных кубов и булевыми функциями от n переменных: подмножеству Вектор функции дискретная математикасоответствует его характеристическая функция

Вектор функции дискретная математика

Например, верхней грани куба B 3 (ее вершины выделены на рисунке) соответствует функция f : f(0,0,1)=f(0,1,1)=f(1,0,1)=f(1,1,1) =1 и f(0,0,0)=f(0,1,0)=f(1,0,0)=f(1,1,0) =0 . Очевидно, что указанное соответствие действительно взаимнооднозначное: каждая булевая функция f от n переменных задает подмножество Af=<(x1, . xn)|f(x1, . xn)=1> вершин B n . Например, функция, тождественно равная 0, задает пустое множество Вектор функции дискретная математика, а функция, тождественно равная 1, задает множество всех вершин B n .

Табличное представление

Булевы функции от небольшого числа аргументов удобно представлять с помощью таблиц . Таблица для функции f(x1, . xn) имеет n+1 столбец. В первых n столбцах указываются значения аргументов x1, . xn , а в (n+1) -ом столбце значение функции на этих аргументах — f(x1, . xn) .

Таблица 3.1. Табличное представление функции f(x1, . xn)

x1...xn-1xnf(x1, . xn)
0...00f(0, . 0,0)
0...01f(0, . 0,1)
0...10f(0, . 1,0)
......Вектор функции дискретная математика
1...11f(1, . 1,1)

Наборы аргументов в строках обычно располагаются в лексикографическом порядке:

Вектор функции дискретная математикасуществует такое Вектор функции дискретная математика, что при Вектор функции дискретная математика, а Вектор функции дискретная математика.

Если эти наборы рассматривать как записи чисел в двоичной системе счисления , то 1-ая строка представляет число 0, 2-ая — 1, 3-я — 2, Вектор функции дискретная математикаа последняя — 2 n -1 .

При больших n табличное представление становится громоздким, например, для функции от 10 переменных потребуется таблица с 1024 строками. Но для малых n оно достаточно наглядно.

📺 Видео

Дискретная математика. Видео 1. Минимизация булевых функций.Скачать

Дискретная математика. Видео 1. Минимизация булевых функций.

Монотонность булевых функцийСкачать

Монотонность булевых функций

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Важнейшие замкнутые классы. Теорема ПостаСкачать

Важнейшие замкнутые классы.  Теорема Поста

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Булевы функции. Функции алгебры логики. Что это?Скачать

Булевы функции. Функции алгебры логики. Что это?

Нахождение функции случайного вектораСкачать

Нахождение функции случайного вектора

Булевы функции и способы их заданияСкачать

Булевы функции и способы их задания

Булевы функцииСкачать

Булевы функции

Характеристические векторы множествСкачать

Характеристические векторы множеств

Двойственные функции ПрактикаСкачать

Двойственные функции  Практика

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

6. Функция. Дискретная математикаСкачать

6. Функция. Дискретная математика
Поделиться или сохранить к себе: