Вектор а вектор б меньше 0 тогда угол между векторами

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Скалярное произведение векторов

Вектор а вектор б меньше 0 тогда угол между векторами

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:11 класс, 5 урок, Угол между векторамиСкачать

11 класс, 5 урок, Угол между векторами

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор а вектор б меньше 0 тогда угол между векторами

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Вектор а вектор б меньше 0 тогда угол между векторами

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Вектор а вектор б меньше 0 тогда угол между векторами

Также векторы могут образовывать тупой угол. Это выглядит так:

Вектор а вектор б меньше 0 тогда угол между векторами

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Вектор а вектор б меньше 0 тогда угол между векторами

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Вектор а вектор б меньше 0 тогда угол между векторами
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

    Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Вектор а вектор б меньше 0 тогда угол между векторами

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Вектор а вектор б меньше 0 тогда угол между векторами

    Вектор а вектор б меньше 0 тогда угол между векторами

    то последнее равенство можно переписать так:

    Вектор а вектор б меньше 0 тогда угол между векторами

    а по первому определению скалярного произведения имеем

    Вектор а вектор б меньше 0 тогда угол между векторами

    Вектор а вектор б меньше 0 тогда угол между векторами

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Вектор а вектор б меньше 0 тогда угол между векторами
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:9 класс, 17 урок, Угол между векторамиСкачать

    9 класс, 17 урок, Угол между векторами

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Вектор а вектор б меньше 0 тогда угол между векторами

    Вектор а вектор б меньше 0 тогда угол между векторами

    Вектор а вектор б меньше 0 тогда угол между векторами

    Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Вектор а вектор б меньше 0 тогда угол между векторами

    По свойству дистрибутивности скалярного произведения имеем

    Вектор а вектор б меньше 0 тогда угол между векторами

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Вектор а вектор б меньше 0 тогда угол между векторами

    В силу свойства коммутативности последнее выражение примет вид

    Вектор а вектор б меньше 0 тогда угол между векторами

    Итак, после применения свойств скалярного произведения имеем

    Вектор а вектор б меньше 0 тогда угол между векторами

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Вектор а вектор б меньше 0 тогда угол между векторами



      Введем систему координат.
      Вектор а вектор б меньше 0 тогда угол между векторами

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Вектор а вектор б меньше 0 тогда угол между векторами

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Вектор а вектор б меньше 0 тогда угол между векторами
  • Найдем длины векторов →AB1 и →BC1:
    Вектор а вектор б меньше 0 тогда угол между векторами
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Вектор а вектор б меньше 0 тогда угол между векторами
  • Найдем косинус угла между прямыми AB1 и BC1:
    Вектор а вектор б меньше 0 тогда угол между векторами
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Вектор а вектор б меньше 0 тогда угол между векторами

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Вектор а вектор б меньше 0 тогда угол между векторами

    Вычислим скалярное произведение:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Вычислим длины векторов:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Найдем косинус угла:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Вектор а вектор б меньше 0 тогда угол между векторами

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    Видео:Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

    Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

    Угол между векторами.

    Вектор а вектор б меньше 0 тогда угол между векторами

    Видео:105. Угол между векторамиСкачать

    105. Угол между векторами

    Формула вычисления угла между векторами

    cos α =a · b
    | a |·| b |

    Видео:найти угол между единичными векторамиСкачать

    найти угол между единичными векторами

    Примеры задач на вычисление угла между векторами

    Примеры вычисления угла между векторами для плоских задачи

    Решение: Найдем скалярное произведение векторов:

    a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

    Найдем модули векторов:

    | a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
    | b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

    Найдем угол между векторами:

    cos α =a · b=24=24= 0.96
    | a | · | b |5 · 525

    Решение: Найдем скалярное произведение векторов:

    a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

    Найдем модули векторов:

    | a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
    | b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

    Найдем угол между векторами:

    cos α =a · b=40=40=4= 0.8
    | a | · | b |5√ 2 · 5√ 2505

    Примеры вычисления угла между векторами для пространственных задач

    Решение: Найдем скалярное произведение векторов:

    a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

    Найдем модули векторов:

    | a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
    | b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

    Найдем угол между векторами:

    cos α =a · b=28=14
    | a | · | b |5 · 615

    Решение: Найдем скалярное произведение векторов:

    a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

    Найдем модули векторов:

    | a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
    | b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

    Найдем угол между векторами:

    cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

    Нахождение угла между векторами  через координаты. 9 класс.

    Нахождение угла между векторами

    Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

    Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

    Углом между векторами a → и b → называется угол между лучами О А и О В .

    Полученный угол будем обозначать следующим образом: a → , b → ^

    Вектор а вектор б меньше 0 тогда угол между векторами

    Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

    a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

    Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

    Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

    Видео:100 тренировочных задач #135 Угол между векторамиСкачать

    100 тренировочных задач #135 Угол между векторами

    Нахождение угла между векторами

    Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

    Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

    Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

    cos a → , b → ^ = a → , b → a → · b →

    Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

    Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

    Решение

    Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

    Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

    Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

    Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

    Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

    cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

    А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

    Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

    Решение

    1. Для решения задачи можем сразу применить формулу:

    cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

    1. Также можно определить угол по формуле:

    cos a → , b → ^ = ( a → , b → ) a → · b → ,

    но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

    Ответ: a → , b → ^ = — a r c cos 1 70

    Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

    Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

    Решение

    Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

    Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

    Ответ: cos A C → , B C → ^ = 3 13

    Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

    A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

    b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

    и отсюда выведем формулу косинуса угла:

    cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

    Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

    Хотя указанный способ имеет место быть, все же чаще применяют формулу:

    📽️ Видео

    №1039. Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АССкачать

    №1039. Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АС

    9 класс, 18 урок, Скалярное произведение векторовСкачать

    9 класс, 18 урок, Скалярное произведение векторов

    Угол между векторамиСкачать

    Угол между векторами

    Угол между векторами. Уроки 11. Геометрия 9 классСкачать

    Угол между векторами. Уроки 11. Геометрия 9 класс

    Угол между векторамиСкачать

    Угол между векторами

    Угол между векторами | Геометрия 7-9 класс #100 | ИнфоурокСкачать

    Угол между векторами | Геометрия 7-9 класс #100 | Инфоурок

    Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

    Вектор. Сложение и вычитание. 9 класс | Математика
    Поделиться или сохранить к себе: