В треугольник можно вписать несколько окружностей верно или нет

Видео:№700. Докажите, что в любой ромб можно вписать окружность.Скачать

№700. Докажите, что в любой ромб можно вписать окружность.

В треугольник можно вписать несколько окружностей верно или нет

Какие из данных утверждений верны? Запишите их номера.

1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны.

2) В любой треугольник можно вписать окружность.

3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.

Проверим каждое из утверждений.

1) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны» — верно, по признаку параллельности прямых.

2) «В любой треугольник можно вписать окружность» — верно, по свойству треугольника.

3) «Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом» — верно, поскольку если его смежные стороны равны, то и все его стороны равны..

Видео:Вокруг любого треугольника можно описать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Вокруг любого треугольника можно описать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанная окружность

В треугольник можно вписать несколько окружностей верно или нет

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      В треугольник можно вписать несколько окружностей верно или нет
    • Четырехугольник
      В треугольник можно вписать несколько окружностей верно или нет
    • Многоугольник
      В треугольник можно вписать несколько окружностей верно или нет

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

    Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

    Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

    Вокруг любого треугольника можно описать окружность, причем только одну.

    Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

    В любой треугольник можно вписать окружность, причем только одну.

    В треугольник можно вписать несколько окружностей верно или нет

    Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

    Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

    В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

    Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

    Вот еще две формулы для площади.
    Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

    — радиус окружности, вписанной в треугольник.

    Есть и еще одна формула, применяемая в основном в задачах части :

    где — стороны треугольника, — радиус описанной окружности.

    Для любого треугольника верна теорема синусов:

    В треугольник можно вписать несколько окружностей верно или нет

    Ты нашел то, что искал? Поделись с друзьями!

    . Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

    В треугольник можно вписать несколько окружностей верно или нет

    Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

    Запишем площадь треугольника АВС двумя способами:

    Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

    В ответ запишем .

    . Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

    В треугольник можно вписать несколько окружностей верно или нет

    По теореме синусов,

    Получаем, что . Угол — тупой. Значит, он равен .

    . Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

    В треугольник можно вписать несколько окружностей верно или нет

    Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

    , где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

    Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

    🌟 Видео

    №8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

    №8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)

    19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать

    19 задание огэ математика 2023 ВСЕ ТИПЫ геометрия

    Окружность вписана в равносторонний треугольник, найти радиусСкачать

    Окружность вписана в равносторонний треугольник, найти радиус

    ОГЭ Задача 26 Радиусы вписанных окружностей в подобных треугольникахСкачать

    ОГЭ Задача 26 Радиусы вписанных окружностей в подобных треугольниках

    №17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

    №17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

    Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

    Вписанная и описанная около равнобедренного треугольника,  окружность

    Любой квадрат можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

    Любой квадрат можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

    Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать

    Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬ

    Окружность, вписанная в четырёхугольник | МатематикаСкачать

    Окружность, вписанная в четырёхугольник | Математика

    Формулы площади треугольника. Вписаная и описаная окружностьСкачать

    Формулы площади треугольника. Вписаная и описаная окружность

    М1152. Расстояние между центрами вписанной и описанной окружностейСкачать

    М1152. Расстояние между центрами вписанной и описанной окружностей

    Разбор задания 13 ОГЭ по математикеСкачать

    Разбор задания 13 ОГЭ по математике

    Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

    Окружность вписана в равнобедренный треугольник. Найти её радиус.

    Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

    Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #Shorts
    Поделиться или сохранить к себе: