В системе си размерность потока вектора электрического смещения

Вектор D (электрическое смещение). Теорема Гаусса для вектора b

Напряженность электростатического поля зависит от свойств среды (от с). Кроме того, вектор напряженности Е на границе диэлектриков претерпевает скачкообразное изменение. Введем для описания электрического поля системы зарядов с учетом поляризационных свойств диэлектриков вспомогательный вектор, использование которого во многих случаях упрощает изучение поля в диэлектриках.

Внутри диэлектрика поле определяется и сторонними, и связанными зарядами. Поэтому, исходя из теоремы Гаусса для вектора напряженности в вакууме (12.11) и учитывая величину плотности нескомпенсированного связанного заряда р’ в диэлектрике, запишем:

В системе си размерность потока вектора электрического смещения

По теореме Гаусса для вектора поляризации (13.5)

В системе си размерность потока вектора электрического смещения

Тогда имеем, что

В системе си размерность потока вектора электрического смещения

В системе си размерность потока вектора электрического смещения

где вектором электрического смещения (электрической индукции) называется вектор

В системе си размерность потока вектора электрического смещения

Для изотропного диэлектрика с учетом формулы (13.3) получаем

В системе си размерность потока вектора электрического смещения

Единица вектора электрического смещения в СИ — кулон на метр в квадрате (Кл/м 2 ).

Вектор D описывает электростатическое поле, создаваемое сторонними зарядами в вакууме, но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично линиям напряженности можно ввести линии электрического смещения. Направление и густота линий вектора электрического смещения определяются так же, как и для вектора напряженности Е.

Согласно уравнению (13.11), теорема Гаусса в дифференциальной форме для вектора D имеет вид

В системе си размерность потока вектора электрического смещения

т.е. дивергенция поля вектора D равна объемной плотности стороннего заряда в той же точке.

Видео:44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать

44. Электрическое поле в диэлектрике. Вектор поляризованности

В системе си размерность потока вектора электрического смещения

отсюда можно записать:

где P = . — вектор поляризации; . — диэлектрическая восприимчивость среды, характеризующая поляризацию единичного объема среды.

Таким образом, вектор D есть сумма (линейная комбинация) двух векторов различной природы: E — главной характеристики поля и P — поляризации среды.

В СИ . т.е. это заряд, протекающий через единицу поверхности.

Для точечного заряда в вакууме .

Для D имеет место принцип суперпозиции, как и для E , т.е.

1.4.4. Поток вектора электрического смещения. Теорема Остроградского-Гаусса для D

Аналогично потоку для вектора E . можно ввести понятие потока для вектора D (ΦD). Пусть произвольную площадку S пересекают линии вектора электрического смещения D под углом α к нормали n (рис. 1.4.10):

В однородном электростатическом поле ΦD = DS cos α = DnS.

Теорему Остроградского — Гаусса для вектора D получим из теоремы Остроградского — Гаусса для вектора E:

Видео:45. Электрическое смещениеСкачать

45. Электрическое смещение

Вектор электрической индукции

Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :

D → = ε 0 E → + P → , где ε 0 — электрическая постоянная, E → — вектор напряженности, P → — вектор поляризации.

Вектор электрического смещения в СНС определяется как:

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Вектор индукции

Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:

По уравнению d i v D → = ρ видно, что для D → единственным источником будут являться свободные заряды, на которых данный вектор начинается и заканчивается. В точках с отсутствующими свободными зарядами вектор электрической индукции является непрерывным. Изменения напряженности поля, вызванные наличием связанных зарядов, учитываются в самом векторе D → .

Видео:Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

Урок 383. Вихревое электрическое поле. Ток смещения

Связь вектора напряженности и вектора электрического смещения

При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:

D → = ε 0 E → + ε 0 χ E → = ε 0 + ε 0 χ E → = ε ε 0 E → .

Где ε – диэлектическая проницаемость среды.

Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:

Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:

D 2 n — D 1 n = σ

n 2 → D 2 → — D 1 → = σ ,

где σ – поверхностная плотность распределения зарядов на границе диэлектриков, n 2 → — нормаль, проведенная в сторону второй среды.

Формула тангенциальной составляющей:

D 2 τ = ε 2 ε 1 D 1 τ .

Единица вектора электрической индукции измеряется в системе С И как К л м 2 .

Поле вектора D → изображается при помощи линий электрического смещения.

Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.

Имеются пластины плоского конденсатора с зарядом q . Произойдет ли изменение вектора электрической индукции при заполненном воздухом пространстве между пластинами и диэлектрика с диэлектрической проницаемостью ε ≠ ε υ o z d .

Поле конденсатора в первом случае характеризовалось вектором смещения ε v o z d = 1 , то есть D 1 → = ε v o z d ε 0 E 1 → = ε 0 E 1 → .

Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:

Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:

Запись результирующего поля с диэлектриком примет вид:

E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ .

Формула плотности связанных зарядов:

Произведем подстановку σ s υ = χ ε 0 E в E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ , тогда:

Далее выражаем из ( 1 . 6 ) напряженность поля Е . Формула принимает вид:

E = E 1 1 + χ = E 1 ε .

Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:

D = ε ε 0 E 1 ε = ε 0 E 1 = D 1 .

Ответ: вектор электрической индукции не изменяется.

Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.

В системе си размерность потока вектора электрического смещения

Рисунок 1 . Замкнутая поверхность

Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :

Φ D = ∫ S D → · d S → .

Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.

Изображена замкнутая поверхность S , проходящая с захватом части пластины изотропного диэлектрика на рисунке 2 . Поток вектора электрической индукции через нее равняется нулю, а поток вектора напряженности > 0 . Какой вывод можно сделать из данной задачи?

В системе си размерность потока вектора электрического смещения

Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика

Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:

Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:

Φ D = ∫ S D → · d S → = Q = 0 .

Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.

Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.

🎦 Видео

Лекция 237. Вектор электрической индукцииСкачать

Лекция 237.  Вектор электрической индукции

Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Билет №31 "Ток смещения"Скачать

Билет №31 "Ток смещения"

Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

ЧК_МИФ ЗАКОН ИНДУКЦИИ ФАРАДЕЯ И ТОК СМЕЩЕНИЯ МАКСВЕЛЛАСкачать

ЧК_МИФ ЗАКОН ИНДУКЦИИ ФАРАДЕЯ И ТОК СМЕЩЕНИЯ МАКСВЕЛЛА

42. Теорема Гаусса. Расчет электростатических полейСкачать

42. Теорема Гаусса. Расчет электростатических полей

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/Скачать

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Поток вектора напряженности электрического поля. Теорема Гаусса. Практическая часть. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. Практическая часть. 10 класс.

Электростатика | поток напряженности электрического поляСкачать

Электростатика | поток напряженности электрического поля

Урок 225. Задачи на поток вектора напряженности электрического поляСкачать

Урок 225. Задачи на поток вектора напряженности электрического поля

1.1 Векторы напряженности и индукции электрического и магнитного полейСкачать

1.1 Векторы напряженности и индукции электрического и магнитного полей

Электростатика. Теорема Остроградского - ГауссаСкачать

Электростатика. Теорема Остроградского - Гаусса

Урок 223. Теорема ГауссаСкачать

Урок 223. Теорема Гаусса

43. Применение теоремы ГауссаСкачать

43. Применение теоремы Гаусса

Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать

Теорема Гаусса для расчета полей цилиндра (нити) и плоскости
Поделиться или сохранить к себе: