Напряженность электростатического поля зависит от свойств среды (от с). Кроме того, вектор напряженности Е на границе диэлектриков претерпевает скачкообразное изменение. Введем для описания электрического поля системы зарядов с учетом поляризационных свойств диэлектриков вспомогательный вектор, использование которого во многих случаях упрощает изучение поля в диэлектриках.
Внутри диэлектрика поле определяется и сторонними, и связанными зарядами. Поэтому, исходя из теоремы Гаусса для вектора напряженности в вакууме (12.11) и учитывая величину плотности нескомпенсированного связанного заряда р’ в диэлектрике, запишем:
По теореме Гаусса для вектора поляризации (13.5)
Тогда имеем, что
где вектором электрического смещения (электрической индукции) называется вектор
Для изотропного диэлектрика с учетом формулы (13.3) получаем
Единица вектора электрического смещения в СИ — кулон на метр в квадрате (Кл/м 2 ).
Вектор D описывает электростатическое поле, создаваемое сторонними зарядами в вакууме, но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.
Аналогично линиям напряженности можно ввести линии электрического смещения. Направление и густота линий вектора электрического смещения определяются так же, как и для вектора напряженности Е.
Согласно уравнению (13.11), теорема Гаусса в дифференциальной форме для вектора D имеет вид
т.е. дивергенция поля вектора D равна объемной плотности стороннего заряда в той же точке.
Видео:44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать
В системе си размерность потока вектора электрического смещения
отсюда можно записать:
где P = . — вектор поляризации; . — диэлектрическая восприимчивость среды, характеризующая поляризацию единичного объема среды.
Таким образом, вектор D есть сумма (линейная комбинация) двух векторов различной природы: E — главной характеристики поля и P — поляризации среды.
В СИ . т.е. это заряд, протекающий через единицу поверхности.
Для точечного заряда в вакууме .
Для D имеет место принцип суперпозиции, как и для E , т.е.
1.4.4. Поток вектора электрического смещения. Теорема Остроградского-Гаусса для D
Аналогично потоку для вектора E . можно ввести понятие потока для вектора D (ΦD). Пусть произвольную площадку S пересекают линии вектора электрического смещения D под углом α к нормали n (рис. 1.4.10):
В однородном электростатическом поле ΦD = DS cos α = DnS.
Теорему Остроградского — Гаусса для вектора D получим из теоремы Остроградского — Гаусса для вектора E:
Видео:45. Электрическое смещениеСкачать
Вектор электрической индукции
Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :
D → = ε 0 E → + P → , где ε 0 — электрическая постоянная, E → — вектор напряженности, P → — вектор поляризации.
Вектор электрического смещения в СНС определяется как:
Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать
Вектор индукции
Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:
По уравнению d i v D → = ρ видно, что для D → единственным источником будут являться свободные заряды, на которых данный вектор начинается и заканчивается. В точках с отсутствующими свободными зарядами вектор электрической индукции является непрерывным. Изменения напряженности поля, вызванные наличием связанных зарядов, учитываются в самом векторе D → .
Видео:Урок 383. Вихревое электрическое поле. Ток смещенияСкачать
Связь вектора напряженности и вектора электрического смещения
При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:
D → = ε 0 E → + ε 0 χ E → = ε 0 + ε 0 χ E → = ε ε 0 E → .
Где ε – диэлектическая проницаемость среды.
Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:
Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:
D 2 n — D 1 n = σ
n 2 → D 2 → — D 1 → = σ ,
где σ – поверхностная плотность распределения зарядов на границе диэлектриков, n 2 → — нормаль, проведенная в сторону второй среды.
Формула тангенциальной составляющей:
D 2 τ = ε 2 ε 1 D 1 τ .
Единица вектора электрической индукции измеряется в системе С И как К л м 2 .
Поле вектора D → изображается при помощи линий электрического смещения.
Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.
Имеются пластины плоского конденсатора с зарядом q . Произойдет ли изменение вектора электрической индукции при заполненном воздухом пространстве между пластинами и диэлектрика с диэлектрической проницаемостью ε ≠ ε υ o z d .
Поле конденсатора в первом случае характеризовалось вектором смещения ε v o z d = 1 , то есть D 1 → = ε v o z d ε 0 E 1 → = ε 0 E 1 → .
Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:
Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:
Запись результирующего поля с диэлектриком примет вид:
E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ .
Формула плотности связанных зарядов:
Произведем подстановку σ s υ = χ ε 0 E в E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ , тогда:
Далее выражаем из ( 1 . 6 ) напряженность поля Е . Формула принимает вид:
E = E 1 1 + χ = E 1 ε .
Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:
D = ε ε 0 E 1 ε = ε 0 E 1 = D 1 .
Ответ: вектор электрической индукции не изменяется.
Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.
Рисунок 1 . Замкнутая поверхность
Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :
Φ D = ∫ S D → · d S → .
Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.
Изображена замкнутая поверхность S , проходящая с захватом части пластины изотропного диэлектрика на рисунке 2 . Поток вектора электрической индукции через нее равняется нулю, а поток вектора напряженности > 0 . Какой вывод можно сделать из данной задачи?
Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика
Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:
Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:
Φ D = ∫ S D → · d S → = Q = 0 .
Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.
Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.
🎦 Видео
Лекция 237. Вектор электрической индукцииСкачать
Билет №02 "Теорема Гаусса"Скачать
Билет №31 "Ток смещения"Скачать
Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать
ЧК_МИФ ЗАКОН ИНДУКЦИИ ФАРАДЕЯ И ТОК СМЕЩЕНИЯ МАКСВЕЛЛАСкачать
42. Теорема Гаусса. Расчет электростатических полейСкачать
Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/Скачать
Урок 222. Поток вектора напряженности электрического поляСкачать
Поток вектора напряженности электрического поля. Теорема Гаусса. Практическая часть. 10 класс.Скачать
Электростатика | поток напряженности электрического поляСкачать
Урок 225. Задачи на поток вектора напряженности электрического поляСкачать
1.1 Векторы напряженности и индукции электрического и магнитного полейСкачать
Электростатика. Теорема Остроградского - ГауссаСкачать
Урок 223. Теорема ГауссаСкачать
43. Применение теоремы ГауссаСкачать
Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать