В ромб нельзя вписать окружность верно ли

Что такое ромб: определение, свойства, признаки

В данной публикации мы рассмотрим определение, свойства и признаки (с рисунками) одной из основных геометрических фигур – ромба.

Видео:В любой ромб можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой ромб можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Определение ромба

Ромб – это фигура на плоскости; разновидность параллелограмма, у которого все четыре стороны равны и попарно параллельны. Обычно ромб обозначается названиями его вершин (например, ABCD), а длина его стороны – строчной латинской буквой (например, a).

В ромб нельзя вписать окружность верно ли

Примечание: квадрат является частным случаем ромба.

Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Свойства ромба

Свойство 1

Противоположные углы ромба равны между собой, а сумма соседних углов составляет 180°.

В ромб нельзя вписать окружность верно ли

Свойство 2

Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.

В ромб нельзя вписать окружность верно ли

В результате пересечения диагоналей ромб делится на 4 прямоугольных треугольника: ΔAEB, ΔBEC, ΔAED и ΔDEC.

Свойство 3

Диагонали ромба являются биссектрисами его углов.

В ромб нельзя вписать окружность верно ли

Свойство 4

Сторону ромба a можно найти через его диагонали d1 и d2 (согласно теореме Пифагора).

В ромб нельзя вписать окружность верно ли

В ромб нельзя вписать окружность верно ли

  • a – гипотенуза любого из 4 прямоугольных треугольников (например, ΔBEC );
  • половины диагоналей d1 и d2 – катеты треугольников.

Свойство 5

В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

В ромб нельзя вписать окружность верно ли

Радиус вписанной в ромб окружности r вычисляется по формуле:

В ромб нельзя вписать окружность верно ли

Видео:№700. Докажите, что в любой ромб можно вписать окружность.Скачать

№700. Докажите, что в любой ромб можно вписать окружность.

Признаки ромба

Параллелограмм является ромбом только в том случае, если для него верно одно из следующих утверждений:

  1. Его диагонали пересекаются под прямым углом.
  2. Если его диагонали являются биссектрисами его углов.
  3. Две смежные стороны равны (следовательно, все стороны равны).

Примечание: Любой четырехугольник, стороны которого равны, является ромбом.

Видео:Геометрия Докажите, что если около ромба можно описать окружность, то этот ромб является квадратомСкачать

Геометрия Докажите, что если около ромба можно описать окружность, то этот ромб является квадратом

можно ли вписать окружность в ромб?

В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
В ромбе все четыре стороны равны, следовательно и суммы длин противоположных сторон равны.
Так что в ромб можно вписать окружность. Причём, в любой ромб.

В ромб нельзя вписать окружность верно ли

Квадрат можно вписать, вот и ромб можно, квадрат может быть ромбом.

Видео:ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikajСкачать

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikaj

Ромб. Формулы, признаки и свойства ромба

В ромб нельзя вписать окружность верно лиВ ромб нельзя вписать окружность верно ли
Рис.1Рис.2

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Видео:Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Видео:4K Как вписать окружность в ромб, видео 2023-2024 годСкачать

4K Как вписать окружность в ромб, видео 2023-2024 год

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

a =S
ha

2. Формула стороны ромба через площадь и синус угла:

a =√ S
√ sinα
a =√ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:

a =S
2 r

4. Формула стороны ромба через две диагонали:

a =√ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a =d 1
√ 2 + 2 cosα
a =d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a =d 1
2 cos ( α /2)
a =d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a =d 2
2 cos ( β /2)
a =d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

a =Р
4

Видео:В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

d 1 =2S
d 2
d 2 =2S
d 1

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

d 1 =2 r
sin ( α /2)
d 2 =2 r
sin ( β /2)

Видео:19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать

19 задание огэ математика 2023 ВСЕ ТИПЫ геометрия

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Видео:Ромб, признаки. 8 класс.Скачать

Ромб, признаки. 8 класс.

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

S =1d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

S =4 r 2
sinα

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S =1d 1 2 · tg ( α /2)
2
S =1d 2 2 · tg ( β /2)
2

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

r =h
2

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

r =S
2 a

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

r =√ S · sinα
2

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

r =a · sinα
2
r =a · sinβ
2

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

r =d 1 · sin ( α /2)
2
r =d 2 · sin ( β /2)
2

6. Формула радиуса круга вписанного в ромб через две диагонали:

r =d 1 · d 2
2√ d 1 2 + d 2 2

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

r =d 1 · d 2
4 a

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📸 Видео

Вписанная окружность. Видеоурок по геометрии 8 классСкачать

Вписанная окружность. Видеоурок по геометрии 8 класс

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Вписанная окружность | Геометрия 7-9 класс #74 | ИнфоурокСкачать

Вписанная окружность  | Геометрия 7-9 класс #74 | Инфоурок

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Урок 1. Вписанная окружность в четырехугольник. Теория+ практикаСкачать

Урок 1. Вписанная окружность в четырехугольник. Теория+ практика

Окружность, вписанная в четырёхугольник | МатематикаСкачать

Окружность, вписанная в четырёхугольник | Математика

Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Как сдать ОГЭ по математике на ТРОЙКУ? / Какие утверждения для фигур необходимо знать для сдачи ОГЭ?Скачать

Как сдать ОГЭ по математике на ТРОЙКУ? / Какие утверждения для фигур необходимо знать для сдачи ОГЭ?
Поделиться или сохранить к себе: