В правильной треугольной призме ABCA1B1C1 все рёбра равны 1.
а) Докажите, что прямая AB1 параллельна прямой, проходящей через середины отрезков AC и BC1.
б) Найдите косинус угла между прямыми AB1 и BC1.
б) Поскольку KL || AB1, необходимо найти угол LKB. По теореме Пифагора AB1 = C1B = Тогда Высота LB правильного треугольника ABC равна По теореме косинусов то есть
Ответ: б)
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Содержание Видео:№199. Прямая р параллельна стороне АВ треугольника ABC. Докажите, что прямые ВССкачать Задача 11035 В правильной треугольной призме.УсловиеВ правильной треугольной призме АВСА1В1С1 все рёбра равны 1. а) Докажите, что прямая АВ1 параллельна прямой, проходящей через середины отрезков АС и ВС1. РешениеА) О – середина АС, Е – серединаВС1 Б) Пусть О – середина АВ, Д – середина ВВ1. Видео:ЕГЭ 2017. Стереометрия. Угол между скрещивающимися прмыми. Пример из" варианты Ященко".Скачать В правильной треугольной призме abca1b1c1 все ребра равны 1 докажите что ab1 параллельна прямойБАЗА ЗАДАНИЙ Задание № 13. Стереометрия с доказательством. 1. В кубе ABCDA 1 B 1 C 1 D 1 все рёбра равны 5. На его ребре BB 1 отмечена точка K так, что KB=4. Через точки K и C 1 проведена плоскость α, параллельная прямой BD 1 . 2. В кубе ABCDA 1 B 1 C 1 D 1 все рёбра равны 5. На его ребре BB 1 отмечена точка K так, что KB=4. Через точки K и C 1 проведена плоскость α, параллельная прямой BD 1 . 4. В правильной треугольной пирамиде SABC сторона основания AB=6, а боковое ребро SA=4. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. 5. В правильной треугольной пирамиде SABC сторона основания AB=60, а боковое ребро SA=37. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. 7. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=4 и BC=6. Длины боковых рёбер пирамиды SA=3, SB=5, SD=3√5. 8. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=8 и BC=6. Длины боковых рёбер пирамиды SA=√21, SB=√85, SD=√57. 9. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=5 и диагональю BD=9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF=BE=4. б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC. 10. В правильной треугольной призме ABCA 1 B 1 C 1 сторона основания AB равна 6, а боковое ребро AA 1 равно 2√2. На рёбрах AB, A 1 B 1 и B 1 C 1 отмечены точки M, N и K соответственно, причём AM = B 1 N= C 1 K=2. 11. В правильной треугольной призме ABCA 1 B 1 C 1 сторона AB основания равна 6, а боковое ребро AA 1 =3. На ребре AB отмечена точка K так, что AK=1. Точки M и L— середины рёбер A 1 C 1 и B 1 C 1 соответственно. Плоскость γ параллельна прямой AC и содержит точки K и L. 12. В правильной четырёхугольной призме ABCDA 1 B 1 C 1 D 1 сторона AB основания равна 8, а боковое ребро AA 1 равно 4√2. На рёбрах BC и C 1 D 1 отмечены точки K и L соответственно, причём BK= C 1 L=2. Плоскость γ параллельна прямой BD и содержит точки K и L. 13. В основании прямой треугольной призмы ABCA 1 B 1 C 1 лежит равнобедренный (AB=BC) треугольник ABC. Точка K— середина ребра A 1 B 1 , а точка M делит ребро AC в отношении AM:MC=1:3. 14. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: AB=2√2, AD=6, AA1=10. На рёбрах AA1 и BB1 отмечены точки E и F соответств., причём A 1 E:EA =3:2 и B 1 F:FB=3:7. Точка T — середина ребра B 1 C 1 . а) Докажите, что плоскость EFT проходит через вершину D1. б) Найдите угол между плоскостью EFT и плоскостью AA1B1. 16. На ребрах CD и BB1 куба ABCDA1B1C1D1 c ребром 12 отмечены точки Р и Q соответственно, причем DP=4, а B 1 Q=3. Плоскость APQ пересекает ребро CC 1 в точке М. 17. В правильной четырехугольной пирамиде SABCD сторона основания АВ равна 16, а высота равна 4. На ребрах АВ, CD и AS отмечены точки M, N и К соответственно, причем AM=DN=4 и АК=3. 18. В правильной треугольной пирамиде SABC сторона основания АВ равна 12, а высота равна 1. На ребрах АВ, АС и AS отмечены точки М, N и К соответственно, причем АМ=AN=3 и AK=7/4. 19. Основанием прямой четырехугольной призмы ABCDA 1 B 1 C 1 D 1 является квадрат ABCD со стороной 4, высота призмы равна 6. Точка K делит ребро AA 1 в соотношении AK:KA 1 =1:2. Через точки K и B проведена плоскость α, параллельная прямой AC и пересекающая ребро DD 1 в точке M. 20. В правильной треугольной призме ABCA 1 B 1 C 1 сторона AB основания равна 12, а боковое ребро AA 1 равно 3√6. На ребрах AB и B 1 C 1 отмечены точки K и L соответственно, причем AK=2, B 1 L=4. Точка M середина A 1 C 1 . Плоскость γ параллельна прямой AC и содержит точки K и L. 21. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=√5 и BC=2. Длины боковых рёбер пирамиды SA=√7, SB=2√3, SD=√11. 22. В правильной четырехугольной пирамиде SABCD все ребра равны 5. На ребрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA=AQ=RC=2. 23. В треугольной пирамиде PABC с основанием ABC известно, что AB=13, PB=15, cos PBA=48/65. Основанием высоты этой пирамиды является точка C. Прямые PA и BC перпендикулярны. 24. Основанием прямой треугольной призмы ABCA 1 B 1 C 1 является прямоугольный треугольник ABC с прямым углом C. Прямые CA 1 и AB 1 перпендикулярны. 6. В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды. 3. Сечением прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью α, содержащей прямую BD 1 и параллельной прямой AC, является ромб. База заданий сформирована из Официального Банка заданий ФИПИ, Открытого банка заданий ЕГЭ, а также из реальных вариантов ЕГЭ прошлых лет. 📹 ВидеоЗадача №14 ЕГЭ профиль геометрия. В правильной треугольной призме ABCA1B1C1Скачать Задача 14 (С2) из проф ЕГЭ 2017 по математикеСкачать Стереометрия 10 класс. Часть 1 | МатематикаСкачать В правильной треугольной призме сторона основания равнаСкачать Угол между прямыми Треугольная призмаСкачать Стереометрия 23 | mathus.ru | угол между плоскостями в правильной треугольной призмеСкачать Стереометрия, номер 10.1Скачать №140. В треугольниках ABC и А1B1С1 медианы ВМ и B1М1 равны, АВ =А1B1, АС=А1С1. Докажите, что ΔABCСкачать №170. Докажите, что треугольники ABC и А1B1С1 равны, если АВ =А1В1, ∠A=∠A1, AD =A1D1, где AD и A1D1Скачать В правильной четырёхугольной призме ABCDA1B1C1D1 известно, что АС1 = 2ВС. Найдите угол междуСкачать №161. В треугольниках ABC и А1B1С1 медианы AM и А1М1 равны, BC=B1С1 и ∠AMB=∠A1M1B1. Докажите, чтоСкачать ЕГЭ 2022 Математика Задание №13 Вариант 5 Профильный ур. Стереометрия Призма ЯщенкоСкачать 14-я задача ЕГЭ по математике. Видеоурок №4Скачать САМЫЙ СТРАННЫЙ ПРИМЕР 3 задания проф. ЕГЭ по математикеСкачать Объем параллелепипеда ABCDA_1B_1C_1D_1 равен 9. Найдите объем треугольной пирамиды ABCA_1.Скачать №233. Основанием прямой призмы АВСA1B1C1 является прямоугольный треугольник ABCСкачать ЕГЭ 2022 Математика Задание №13 Вариант 3 Профильный ур. Стереометрия Призма. ЯщенкоСкачать №130. В треугольниках ABC и А1В1С1 отрезки СО и С1О1 — медианы, ВС=В1С1, ∠B = ∠B1 и ∠C=∠C1Скачать |