В данной публикации мы рассмотрим основные свойства высоты в равностороннем (правильном) треугольнике. Также разберем пример решения задачи по этой теме.
Примечание: треугольник называется равносторонним, если все его стороны равны.
- Свойства высоты в равностороннем треугольнике
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- Свойства равностороннего треугольника
- Все, что нужно знать о треугольнике
- ТРЕУГОЛЬНИК.
- Площадь треугольника.
- Медиана треугольника
- Биссектриса треугольника
- Высота треугольника
- Теорема синусов:
- Прямоугольный треугольник
- Соотношение элементов в прямоугольном треугольнике:
- Равнобедренный треугольник.
- Правильный треугольник
- Средняя линия треугольника
- Внешний угол треугольника
- Признаки равенства треугольников:
- Признаки подобия треугольников:
- Теорема Менелая
- 💡 Видео
Видео:Равносторонний треугольник в окружностиСкачать
Свойства высоты в равностороннем треугольнике
Свойство 1
Любая высота в равностороннем треугольнике одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.
- BD – высота, опущенная на сторону AC;
- BD – медиана, которая делит сторону AC пополам, т.е. AD = DC;
- BD – биссектриса угла ABC, т.е. ∠ABD = ∠CBD;
- BD – серединный перпендикуляр, проведенный к AC.
Свойство 2
Все три высоты в равностороннем треугольнике имеют одинаковую длину.
Свойство 3
Высоты в равностороннем треугольнике в ортоцентре (точке пересечения) делятся в отношении 2:1, считая от вершины, из которой они проведены.
Свойство 4
Ортоцентр равностороннего треугольника является центром вписанной и описанной окружностей.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 5
Высота в равностороннем треугольнике делит его на два равных по площади (равновеликих) прямоугольных треугольника.
Три высоты в равностороннем треугольнике делят его на 6 равных по площади прямоугольных треугольников.
Свойство 6
Зная длину стороны равностороннего треугольника его высоту можно вычислить по формуле:
a – сторона треугольника.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Пример задачи
Радиус окружности, описанной вокруг равностороннего треугольника, равняется 7 см. Найдите сторону этого треугольника.
Решение
Как мы знаем из Свойств 3 и 4, радиус описанной окружности составляет 2/3 от высоты равностороннего треугольника (h). Следовательно, h = 7 ∶ 2 ⋅ 3 = 10,5 см.
Теперь остается вычислить длину стороны треугольника (выражение выведено из формулы в Свойстве 6):
Видео:Построить описанную окружность (Задача 1)Скачать
Свойства равностороннего треугольника
Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.
Свойства равностороннего треугольника
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AK — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
5) Расстояние от точки пересечения высот, биссектрис и медиан
до любой вершины треугольника равно радиусу описанной окружности:
6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:
7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.
8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:
Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать
Все, что нужно знать о треугольнике
При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо
- Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
- Нанести все данные из условия задачи на чертеж
- Выписать все геометрические понятия, которые встречаются в задаче
- Вспомнить все теоремы, которые относятся к этим понятию
- Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем
Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.
В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.
ТРЕУГОЛЬНИК.
Площадь треугольника.
1. ,
здесь — произвольная сторона треугольника, — высота, опущенная на эту сторону.
2. ,
здесь и — произвольные стороны треугольника, — угол между этими сторонами:
3. Формула Герона:
— здесь — длины сторон треугольника, — полупериметр треугольника,
4. ,
здесь — полупериметр треугольника, — радиус вписанной окружности.
Пусть — длины отрезков касательных.
Тогда формулу Герона можно записать в таком виде:
5.
6. ,
здесь — длины сторон треугольника, — радиус описанной окружности.
Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Медиана треугольника
— это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.
Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.
Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r
Длина медианы произвольного треугольника вычисляется по формуле:
,
здесь — медиана, проведенная к стороне , — длины сторон треугольника.
Биссектриса треугольника
— это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.
Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:
Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.
Все точки биссектрисы угла равноудалены от сторон угла.
Высота треугольника
— это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.
Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
Чтобы найти высоту треугольника, проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:
Центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.
Радиус описанной окружности треугольника можно найти по таким формулам:
— здесь — длины сторон треугольника, — площадь треугольника.
,
где — длина стороны треугольника, — противолежащий угол. (Эта формула вытекает из теоремы синусов).
Неравенство треугольника
Каждая сторона треугольника меньше суммы и больше разности двух других.
Сумма длин любых двух сторон всегда больше длины третьей стороны:
c» title=»a+b>c»/>
Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:
Если , то и наоборот.
Теорема синусов:
стороны треугольника пропорциональны синусам противолежащих углов:
Теорема косинусов:
квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
Прямоугольный треугольник
— это треугольник, один из углов которого равен 90°.
Сумма острых углов прямоугольного треугольника равна 90°.
Гипотенуза — это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.
Теорема Пифагора:
квадрат гипотенузы равен сумме квадратов катетов:
Радиус окружности, вписанной в прямоугольный треугольник, равен
,
здесь — радиус вписанной окружности, — катеты, — гипотенуза:
Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
Определение синуса, косинуса , тангенса и котангенса прямоугольного треугольника смотрите здесь.
Соотношение элементов в прямоугольном треугольнике:
Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:
Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:
:
Катет, лежащий против угла равен половине гипотенузы:
Равнобедренный треугольник.
Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.
В равнобедренном треугольнике углы при основании равны.
— угол при вершине.
и — боковые стороны,
и — углы при основании.
— высота, биссектриса и медиана.
Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.
Правильный треугольник
(или равносторонний треугольник ) — это треугольник, все стороны и углы которого равны между собой.
Площадь правильного треугольника равна
,
где — длина стороны треугольника.
Центр окружности, вписанной в правильный треугольник, совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.
Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.
Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.
Средняя линия треугольника
— это отрезок, соединяющий середины двух сторон.
На рисунке DE — средняя линия треугольника ABC.
Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE
Внешний угол треугольника
— это угол, смежный какому либо углу треугольника.
Внешний угол треугольника равен сумме двух углов, не смежных с ним.
Тригонометрические функции внешнего угла:
Признаки равенства треугольников:
1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.
Признаки подобия треугольников:
1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.
2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.
3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.
Важно: в подобных треугольниках сходственные стороны лежат против равных углов.
Теорема Менелая
Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда
💡 Видео
№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать
Строим вписанную в данный треугольник окружность (Задача 2).Скачать
№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит однуСкачать
Построение равностронего треугольника.Скачать
Треугольник и окружность #shortsСкачать
Деление окружности на 3; 6; 12 равных частейСкачать
Геометрия Центр окружности, вписанной в равнобедренный треугольник, делит его высоту, проведеннуюСкачать
Радиус описанной окружностиСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Через центр О окружности, описанной около остроугольного треугольника ДВИ МГУСкачать
Задача 6 №27892 ЕГЭ по математике. Урок 126Скачать
№690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружностиСкачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать