Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Геометрия 11 класс. Вписанный четырехугольникСкачать

Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
| Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||
| Окружность, описанная около параллелограмма | ![]() | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||||||||||||||||||||||||||
| Окружность, описанная около ромба | ![]() | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||||||||||||||||||||||||||
| Окружность, описанная около трапеции | ![]() | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||||||||||||||||||||||||||
| Окружность, описанная около дельтоида | ![]() | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||||||||||||||||||||||||||
| Произвольный вписанный четырёхугольник | ![]() | |||||||||||||||||||||||||||||||
| Окружность, описанная около параллелограмма | ||
![]() | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
| Окружность, описанная около ромба | ||
![]() | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
| Окружность, описанная около трапеции | ||
![]() | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
| Окружность, описанная около дельтоида | ||
![]() | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
| Произвольный вписанный четырёхугольник | ||
![]() | ||
| Окружность, описанная около параллелограмма |
![]() |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:ЕГЭ Задание 16 Признак вписанного четырехугольникаСкачать

Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
![]() | (1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать

Сумма углов четырехугольника
Свойства
- Сумма углов четырехугольника равна 360°.
∠A + ∠B + ∠C + ∠D = 360°. - Если четырехугольник правильный, то каждый угол по 90°
и этот четырехугольник является квадратом.
∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
ABCD — квадрат. - Сумма противоположных углов четырехугольника равна 180°,
если около четырехугольника описана окружность.
∠A + ∠С = ∠В + ∠D = 180°.
Такие четырехугольники называют вписанными.
Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Вписанный четырехугольник. Задание 6
Вписанный четырехугольник. Задание 6
При решении задач на нахождение углов вписанного четырехугольника нам нужно вспомнить, что
1. Четырехугольник называется вписанным в окружность, если все его вершины лежат на окружности:
2. Сумма противоположных углов вписанного четырехугольника равна 180°:
Рассмотрим решение задач из Открытого банка заданий по математике:
1 .Задание B7 (№ 27871)
Угол A четырехугольника ABCD, вписанного в окружность, равен 58°. Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Сумма углов А и С равна 180°, поэтому угол С равен 180°-58°=122°
Ответ: 122°
2 . Задание B7 (№ 27927)
Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

3 . Задание B7 (№ 27928)
Углы A, B и C четырехугольника ABCD относятся как 1:2:3. Найдите угол D, если около данного четырехугольника можно описать окружность. Ответ дайте в градусах.
Введем единичный угол. Тогда величины углов А, В и С можно записать так:
А=х, В=2х, С=3х. Суммы противоположных углов вписанного четырехугольника равны и равны 180°. Сумма углов А и С равна 4х и равна 180°. Отсюда х=45°.
Очевидно, что величина угла D равна 4х-2х=90°
💡 Видео
11 класс, 43 урок, Вписанный четырехугольникСкачать

Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 УмскулСкачать

16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольникиСкачать

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанный в окружность четырёхугольник.Скачать

Почему 2 + 2 = 4? Отвечает математик Алексей Савватеев | Математика для всех 😉Скачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

№16 из ЕГЭ 2022. Я удвоил медиану, и она призналасьСкачать

Задание 25 Вписанный четырёхугольникСкачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

Дикая прямая Симсона. Опровержение софизмаСкачать

Пробелы дистанционного обучения по математике. Свойство вписанного четырёхугольникаСкачать

Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

4.2. Вписанные и описанные окружности. Четырехугольники.Скачать

🔴 ОГЭ 2017 модуль Геометрия (вар 4). ЯщенкоСкачать

Вписанные четырехугольники и их свойства















