В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

Задание 6. В четырёхугольник ABCD вписана окружность, АВ = 8 , ВС = 4 и CD = 25. Найдите четвёртую сторону четырёхугольника.

В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

Так как в четырехугольник вписана окружность, то он обладает свойством, что сумма его противоположных сторон равна, т.е.

Найдем сторону AD из этого равенства, получим

Видео:Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

Вписанная окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам
    • Четырехугольник
      В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам
    • Многоугольник
      В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:ЕГЭ Математика Задание 6#27935Скачать

    ЕГЭ Математика Задание 6#27935

    Решение №591 В четырёхугольник ABCD вписана окружность, AB=8, BC=5 и CD=27.

    В четырёхугольник ABCD вписана окружность, AB = 8, BC = 5 и CD = 27. Найдите четвёртую сторону четырёхугольника.

    В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

    Источники: fipi, os.fipi, Основная волна 2019, Досрочная волна 2013

    В четырехугольник авсд вписана окружность известно что точка касания делит стороны пополам

    У четырёхугольника описанного около окружности сумма длин противоположных сторон равна:

    AD + BC = DC + AB
    AD + 5 = 27 + 8
    AD = 27 + 8 – 5
    AD = 30

    Ответ: 30.

    Есть три секунды времени? Для меня важно твоё мнение!

    Насколько понятно решение?

    Средняя оценка: 5 / 5. Количество оценок: 1

    Оценок пока нет. Поставь оценку первым.

    Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

    Вступай в группу vk.com 😉

    Расскажи, что не так? Я исправлю в ближайшее время

    В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

    📺 Видео

    Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

    Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Задача 16. ЕГЭ по математике-1Скачать

    Задача 16. ЕГЭ по математике-1

    Четырехугольники, вписанные в окружность. 9 класс.Скачать

    Четырехугольники, вписанные в окружность. 9 класс.

    Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    2122 в четырёхугольник ABCD вписана окружность AB равно 17 CD равно 22Скачать

    2122 в четырёхугольник ABCD вписана окружность AB равно 17 CD равно 22

    Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

    Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8

    Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

    Окружность вписана в равнобедренный треугольник. Найти её радиус.

    ОГЭ/База Все прототипы задач на окружностиСкачать

    ОГЭ/База Все прототипы задач на окружности

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Вписанная и описанная окружность в четырехугольник.Скачать

    Вписанная и описанная окружность  в четырехугольник.

    Бицентрический четырёхугольник. Вписанно-описанная трапецияСкачать

    Бицентрический четырёхугольник.  Вписанно-описанная трапеция

    Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

    Описанная и вписанная окружности четырехугольника - 8 класс геометрия

    ЕГЭ (Выпуск №4). Задание 6. Окружности. Вписанные углы.Скачать

    ЕГЭ (Выпуск №4). Задание 6. Окружности. Вписанные углы.

    Вписанная окружность 1Скачать

    Вписанная окружность 1

    2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABCСкачать

    2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABC

    ДВИ математика. КАРКАСНЫЙ ТЕТРАЭДР!Скачать

    ДВИ математика. КАРКАСНЫЙ ТЕТРАЭДР!
    Поделиться или сохранить к себе: