Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.
Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть
Конечно, углы и , и — тоже вертикальные.
Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .
Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.
Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть
Углы и (а также и , и , и ) называются соответственными.
Соответственные углы равны, то есть
Углы и (а также и , и , и ) называют накрест лежащими.
Накрест лежащие углы равны, то есть
Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.
Ты нашел то, что искал? Поделись с друзьями!
1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .
Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.
Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.
Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .
Периметр параллелограмма — это сумма всех его сторон, то есть
2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.
Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .
3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.
Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.
Давайте посмотрим на чертеж. По условию, , то есть .
Углы и — односторонние при параллельных прямых и секущей, следовательно,
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Геометрия. 7 класс
Конспект урока
Свойства параллельных прямых
Перечень рассматриваемых вопросов:
- Углы, образованные при пересечении двух прямых секущей.
- Доказательство свойств параллельных прямых и их применение при решении задач.
- Формулирование теоремы об углах с соответственно параллельными сторонами.
Две прямые на плоскости называются параллельными, если они не пересекаются.
Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Ранее мы узнали и научились применять признаки параллельности прямых.
Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.
В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).
Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.
Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).
Сформулируем и докажем обратное утверждение.
Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.
∠1 и ∠2 – накрест лежащие.
Доказательство:( метод от противного):
Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.
Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.
Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.
С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.
Что и требовалось доказать.
Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).
Сформулируем и докажем обратное утверждение
Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.
Дано:
Доказать:
По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).
Значит, ∠1 = ∠2, что и требовалось доказать.
Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).
Сформулируем и докажем обратное утверждение.
Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.
Дано:a║b,
Доказать:
По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).
∠2+∠4=180° (по свойству смежных углов).
→ ∠1+∠4= 180°,что и требовалось доказать.
Материал для углубленного изучения темы.
Задача на доказательство.
Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.
Докажем, что ОС=ОD.
По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.
Доказать: ОС = ОD.
Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.
Разбор заданий тренировочного модуля.
1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?
На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.
Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).
2. На рисунке прямые а║b, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?
По условию а║b→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,
∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.
По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.
Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
51. Планиметрия Читать 0 мин.
Видео:7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать
51.65. Углы и параллельные прямые
Взаимное расположение прямых:
- Прямые пересекаются, у них есть одна общая точка.
- Прямые не пересекаются, у них нет общих точек. Такие прямые называются параллельными.
При пересечении двух прямых образуются вертикальные и смежные углы.
Вертикальные углы — равны.
Сумма смежных углов равна 180°.
Параллельные прямые
Прямые называются параллельными, если они не пересекаются, сколько бы их не продолжать.
О параллельных прямых:
- Если одна из пары параллельных прямых параллельна третьей прямой, то все прямые параллельны между собой.
- На плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
- Если две прямые на плоскости перпендикулярны третьей прямой, то они параллельны.
При пересечении двух параллельных прямых секущей образуются следующие углы:
- внутренние накрест лежащие (4 и 5, 3 и 6) — попарно равны;
- внешние накрест лежащие (1 и 8, 2 и 7) — попарно равны;
- соответственные (1 и 5, 2 и 6, 3 и 7, 4 и 8) — попарно равны;
- внутренние односторонние (3 и 5, 4 и 6) — сумма таких углов равна 180°;
- внешние односторонние (1 и 7, 2 и 8) — сумма таких углов равна 180°.
Часто для использования свойств углов, полученных при пересечении двух параллельных прямых секущей, необходимо применять дополнительные построения.
Пример: Даны углы с попарно параллельными сторонами. Что можно сказать об углах 1 и 2? Что можно сказать об углах 3 и 4?
Продолжим стороны углов до пересечения:
Получаем, что углы 1 и 2 равны, т. к. являются накрест лежащими при параллельных прямых.
Сумма углов 3 и 4 равна 180°, т. к. они являются односторонними при параллельных прямых.
Теорема Фалеса: При пересечении сторон угла параллельными прямыми стороны угла делятся на пропорциональные отрезки (образуются подобные треугольники).
📽️ Видео
Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать
Параллельные прямые (задачи).Скачать
Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Углы между секущими и параллельными прямымиСкачать
29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать
№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать
Теорема 14.3 Если соответственные углы равны, то прямые параллельны || Геометрия 7 класс ||Скачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Угол между прямыми в пространстве. 10 класс.Скачать
Пары углов в геометрииСкачать
9. Угол между прямымиСкачать
Углы между параллельными прямыми и секущей | Геометрия | АлгебраСкачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямымСкачать
Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.Скачать
Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать
Теоремы об углах, образованных двумя параллельными прямыми и секущей.Скачать