При изучении признаков равенства треугольников в курсе геометрии 7 класса возникли вопросы: Существуют ли признаки равенства четырёхугольников? Если да, то по скольким элементам? Можно ли их сформулировать и доказать, опираясь на признаки равенства треугольников?
Цель: Сформулировать и доказать признаки равенства четырёхугольников.
Задачи: 1) Изучить литературу по данной теме.
2) Исследовать все различные комбинации наборов сторон и углов из четырёх элементов и, либо доказать признак, либо опро- вергнуть его, приведя контрпример.
3) Исследовать все случаи различных комбинаций из 5 элементов, сформулировать и доказать признак, либо опровергнуть.
Две геометрические фигуры называются равными, если их можно совместить наложением.
Два четырехугольника называются равными, если их можно совместить наложением.
Существуют признаки равенства четырехугольников по четырем элементам.
ПО ЧЕТЫРЁМ УГЛАМ
2)ПО ТРЁМ УГЛАМ И СТОРОНЕ а)
3)ПО ДВУМ УГЛАМ И ДВУМ СТОРОНАМ а)
4) ПО УГЛУ И ТРЁМ СТОРОНАМ а) BC=BC1
5)ПО ЧЕТЫРЁМ СТОРОНАМ
BC=BC1, CD=CD1, AD=AD1
(смотри Приложение №1 — с. 29 )
ПРИЗНАКОВ РАВЕНСТВА ЧЕТЫРЁХУГОЛЬНИКОВ ПО ЧЕТЫРЁМ
ЭЛЕМЕНТАМ НЕ СУЩЕСТВУЕТ.
Существуют признаки равенства четырёхугольников по пяти элементам.
Если четыре стороны и угол одного четырёхугольника соответственно равны четырём сторонам и углу другого четырёхугольника, то такие четырёхугольники равны.
ABCD И A[]B[]C[]D[]- четырёхугольники. AB=A[]B[], BC= B[]C[], CD=C[]D[],
Вывод: Т. к. соответственные стороны и соответственные углы четырёхугольников равны, то они совместятся наложением, а значит- по определению равных фигур — ABCD=A[]B[]C[]D[].
Если три стороны и два угла между ними одного четырёхугольника соответственно равны трём сторонам и двум углам между ними другого четырёхугольника, то такие четырёхугольники равны.
Т. к. соответственные стороны и углы четырёхугольников равны, то они совместятся наложением, а значит- по определению равных
Если три стороны и два угла, не лежащие между ними, одного четырёхугольника соответственно равны трём сторонам и двум углам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.
Случай, где углы четырёхугольника тупые доказывается аналогично, достаточно перейти к смежным, соответственно равным углам.
Если два противолежащих угла и три стороны одного четырёхугольника соответственно равны двум противолежащим углам и трём сторонам другого четырёхугольника, то такие четырёхугольники равны.
Если три угла и две стороны между ними одного четырёхугольника соответственно равны трём углам и двум сторонам между ними другого четырёхугольника, то такие четырёхугольники равны.
Если три угла и две смежные стороны, не лежащие между ними, одного четырёхугольника, соответственно равны трём углам и двум сторонам, не лежащим между ними , другого четырёхугольника, то такие четырёхугольники равны.
Если три угла и две смежные стороны, одна из которых лежит между данными углами, одного четырёхугольника, соответственно равны трём углам и двум смежным сторонам, одна из которых лежит между двумя данными углами другого четырёхугольника, то такие четырёхугольники равны.
По стороне и четырём углам
1) Эмпирические (изучение литературы, сбор сведений, сбор и обработка статистического материала)
2) Теоретические (сравнение и обобщение данных, составление таблиц)
3) Практические (построения с помощью циркуля и линейки, доказательства).
1) Изучение и исследование материала по теме.
2) Изучение проблемы.
3) Обработка материала и выработка практических рекомендаций.
1) Рассмотрев все различные наборы из четырёх элементов (сторон и углов) четырёхугольника, получили 12 случаев, к каждому из них с помощью циркуля и линейки привели контрпример, построив 2 неравных четырёхугольника по данным элементам.
2) Рассмотрев все различные наборы из 5 элементов четырёхугольника, получили 10 случаев, 7 из которых стали признаками равенства четырёхугольников, а к 3 случаям привели контрпример, построив неравные между собой четырёхугольники.
При изучении данной темы было установлено: существуют признаки равенства четырёхугольников по 5 элементам.
1. По 4 сторонам и углу: если четыре стороны и угол одного четырёхугольника соответственно равны четырем сторонам и углу другого четырёхугольника, то такие четырёхугольники равны.
2. По 3 сторонам и 2 углам между ними: если три стороны и два угла между ними одного четырёхугольника соответственно равны трем сторонам и двум углам между ними другого четырёхугольника, то такие четырёхугольники равны.
3. По 3 сторонам и 2 углам, не лежащим между ними: если три стороны и два угла, не лежащие между ними, одного четырёхугольника соответственно равны трем сторонам и двум углам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.
4. По 2 противолежащим углам и 3 сторонам: если два противолежащих угла и три стороны одного четырёхугольника соответственно равны двум противолежащим углам и трем сторонам другого четырёхугольника, то такие четырёхугольники равны.
5. По 3 углам и 2 сторонам между ними: если три угла и две стороны между ними одного четырёхугольника соответственно равны трем углам и двум сторонам между ними другого четырёхугольника, то такие четырёхугольники равны.
6. По 3 углам и 2 смежным сторонам, не лежащим между ними: если три угла и две смежные стороны, не лежащие между ними, одного четырёхугольника соответственно равны трем углам и двум смежным сторонам, не лежащим между ними, другого четырёхугольника, то такие четырёхугольники равны.
7. По 3 углам и 2 смежным сторонам, одна из которых лежит между данными углами: если три угла и две смежные стороны, одна из которых лежит между данными углами, одного четырёхугольника соответственно равны трем углам и двум смежным сторонам, одна из которых лежит между данными углами другого четырёхугольника, то такие четырёхугольники равны.
Была проделана работа по доказательству признаков равенства четырёхугольников. Для доказательства были использованы признаки равенства треугольников, определение равных фигур, геометрические построения с помощью циркуля и линейки.
В результате работы сформулировали и доказали 7 признаков по пяти элементам. Эти признаки могут быть полезны для тех, кто начинает изучать геометрию, учится сам формулировать и доказывать теоремы, а также в практической деятельности человека, например, при нахождении площадей.
- Четырехугольники
- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- Докажите, что если у двух выпуклых четырехугольников соответственно равны все стороны и по одному углу между соответствующими сторонами, то такие четырехугольники равны?
- Докажите, что сумма углов любого выпуклого четырехугольника равна 360º?
- Середина m стороны ad выпуклого четырехугольника равноудалена от всех его вершин?
- Две противоположные стороны выпуклого четырехугольника лежат на перпендикулярных прямых?
- Докажите, что если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали данного четырехугольника равны?
- Середина М стороны АД выпуклого четырехугольника равноудалена от всех его вершин?
- 1. Доказать, что около четырехугольника, полученного при пересечении биссектрис внешних углов произвольного выпуклого четырехугольника, можно описать окружность?
- В четырехугольнике противоположные углы попарно равны докажите что противоположные стороны четырехугольника попарно равны?
- Если стороны одного четырехугольника соответственно равны сторонам другого четырехугольника, то такие четырехугольники равны?
- Докажите что если сумма углов прилежащих к любой из двух соседних сторон четырехугольника равна 180º, то этот четырехугольник параллелограмм?
- Чему равна сумма углов выпуклого четырехугольника, если один из сторон равен 60 а остальные равны между собой?
- 📸 Видео
Видео:9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать
Четырехугольники
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать
Докажите, что если у двух выпуклых четырехугольников соответственно равны все стороны и по одному углу между соответствующими сторонами, то такие четырехугольники равны?
Геометрия | 5 — 9 классы
Докажите, что если у двух выпуклых четырехугольников соответственно равны все стороны и по одному углу между соответствующими сторонами, то такие четырехугольники равны.
См. рисунок в приложении.
Равные стороны отмечены одинаковым цветом.
Пусть равными являются углы при точках В и B₁
Проведем диагонали АС и A₁C₁
Треугольники АВС и А₁В₁С₁ равны по двум сторонам и углу между ними.
Из равенства треугольников следует, что АС = А₁С₁
Треугольники АСD и A₁C₁D₁ равны по трем сторонам.
Четырехугольники равносоставлены ( состоят из равных фигур).
Четырехугольники равны между собой.
Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать
Докажите, что сумма углов любого выпуклого четырехугольника равна 360º?
Докажите, что сумма углов любого выпуклого четырехугольника равна 360º.
Видео:Многоугольники. Математика 8 класс | TutorOnlineСкачать
Середина m стороны ad выпуклого четырехугольника равноудалена от всех его вершин?
Середина m стороны ad выпуклого четырехугольника равноудалена от всех его вершин.
Найдите ad, если bc = 12, а углы b и c четырехугольника равны соответственно 115 и 95.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Две противоположные стороны выпуклого четырехугольника лежат на перпендикулярных прямых?
Две противоположные стороны выпуклого четырехугольника лежат на перпендикулярных прямых.
Докажите, что расстояние между серединами двух других сторон четырехугольника равно расстоянию между серединами его диагоналей.
Видео:8 класс, 2 урок, Выпуклый многоугольникСкачать
Докажите, что если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали данного четырехугольника равны?
Докажите, что если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали данного четырехугольника равны.
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Середина М стороны АД выпуклого четырехугольника равноудалена от всех его вершин?
Середина М стороны АД выпуклого четырехугольника равноудалена от всех его вершин.
Найдите АД, если ВС = 9, а углы В и С четырехугольника равны соответственно 98 градусов и 142 градусов.
Видео:№368. Найдите углы выпуклого четырехугольника, если они равны друг другу.Скачать
1. Доказать, что около четырехугольника, полученного при пересечении биссектрис внешних углов произвольного выпуклого четырехугольника, можно описать окружность?
1. Доказать, что около четырехугольника, полученного при пересечении биссектрис внешних углов произвольного выпуклого четырехугольника, можно описать окружность.
2. Окружность на сторонах выпуклого четырехугольника отсекает равные между собой хорды.
Доказать, что суммы противоположных сторон этого четырехугольника равны.
Видео:№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.Скачать
В четырехугольнике противоположные углы попарно равны докажите что противоположные стороны четырехугольника попарно равны?
В четырехугольнике противоположные углы попарно равны докажите что противоположные стороны четырехугольника попарно равны.
Видео:№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать
Если стороны одного четырехугольника соответственно равны сторонам другого четырехугольника, то такие четырехугольники равны?
Если стороны одного четырехугольника соответственно равны сторонам другого четырехугольника, то такие четырехугольники равны?
Видео:Красивая задача про углы четырехугольникаСкачать
Докажите что если сумма углов прилежащих к любой из двух соседних сторон четырехугольника равна 180º, то этот четырехугольник параллелограмм?
Докажите что если сумма углов прилежащих к любой из двух соседних сторон четырехугольника равна 180º, то этот четырехугольник параллелограмм.
Видео:ОГЭ Задание 24 Площадь выпуклого четырехугольникаСкачать
Чему равна сумма углов выпуклого четырехугольника, если один из сторон равен 60 а остальные равны между собой?
Чему равна сумма углов выпуклого четырехугольника, если один из сторон равен 60 а остальные равны между собой.
Вы зашли на страницу вопроса Докажите, что если у двух выпуклых четырехугольников соответственно равны все стороны и по одному углу между соответствующими сторонами, то такие четырехугольники равны?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.
📸 Видео
Найдите углы четырёхугольникаСкачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать
Четырехугольники. Вебинар | МатематикаСкачать
№ 366 - Геометрия 7-9 класс АтанасянСкачать
№430. Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположныеСкачать