Формула Эйлера
Мы знаем, что в каждый треугольник можно вписать окружность и можно описать около него окружность. Ясно, что вписанная окружность лежит внутри описанной, поскольку вписанная окружность лежит внутри треугольника, а сам треугольник лежит внутри описанной окружности.
Радиусы вписанной и описанной окружностей и расстояние между их центрами всегда связаны между собой определенным соотношением. Справедлива следующая теорема.
Теорема. В треугольнике радиус R описанной окружности и радиус r вписанной окружности связаны с расстоянием d между их центрами соотношением
В частности, если d=0 (центры окружностей совпадают), то .
Эта формула называется формулой Эйлера.
Доказательство.
Рассмотрим треугольник АВС, у которого точка О – центр описанной окружности, а точка – центр вписанной окружности. Будем считать пока, что (рисунок 1). Проведем биссектрисы и углов А и В. Они пересекаются с описанной окружностью в некоторых точках и . Пусть P и Q – точки пересечения прямой с описанной окружностью. По теореме о произведении отрезков пересекающихся хорд , или
Заметим теперь, что поскольку и – биссектрисы углов А и В, то , а . Следовательно,
Поэтому треугольник равнобедренный: . Таким образом, соотношение можно переписать так:
Проведем теперь диаметр описанной окружности и обозначим буквой К точку касания вписанной окружности и стороны АВ. Треугольники и подобны (они прямоугольные и имеют равные углы А и ), поэтому
Откуда . Подставив это выражение, получим
В случае d=0 (рисунок 2) каждая из сторон треугольника АВС равна , а значит, этот треугольник равносторонний.
Поэтому , , и, следовательно, . Теорема доказана.
Замечание. В ходе доказательства теоремы мы установили весьма полезный факт:
Точка пересечения продолжения биссектрисы, проведенной из одной из вершин треугольника, с описанной окружностью равноудалена от двух других вершин и центра вписанной окружности.
Теорема Птолемея
В любой треугольник можно вписать окружность и около него можно описать окружность. Однако для других многоугольников это не так. Мы знаем, например, что в четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны. Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна . Эти утверждения очень похожи друг на друга. Используя скобки, их можно объединить в одно:
Описанная (вписанная) окружность для данного четырехугольника существует тогда и только тогда, когда суммы его противоположных углов (сторон) равны.
Существуют и другие характеристические свойства вписанных и описанных четырехугольников. Наиболее известное основано на теореме Птолемея.
Теорема (Птолемея). Произведение диагоналей вписанного в окружность четырехугольника равно сумме произведений противоположных сторон.
Доказательство.
Рассмотрим вписанный четырехугольник АВСD. Для удобства введем обозначение: АВ = а, ВС = b, CD = c, DA = d, AC = m, BD = n (рисунок 3) и докажем, что .
На диагонали АС возьмем такую точку М, что . Треугольники АВМ и DBC подобны по двум углам ( по построению, а углы ВАМ и BDC равны как вписанные и опирающиеся на одну и ту же дугу). Следовательно, , откуда , или (1).
Далее, треугольники МВС и ADB также подобны, так как , а углы ВСМ и BDA равны как вписанные и опирающиеся на одну и ту же дугу. Поэтому , , откуда , или (2).
Сложив равенства (1) и (2), получим , или , что и требовалось доказать.
Оказывается, что рассмотренное свойство вписанного четырехугольника является характеристическим, то есть верно и обратное утверждение.
Если в выпуклом четырехугольнике произведение диагоналей равно сумме произведений противоположных сторон, то около него можно описать окружность.
Рекомендую далее изучить тему «Вневписанные окружности».
Спасибо, что поделились статьей в социальных сетях
Источник: Атанасян Л.С. Геометрия. Дополнительные главы к учебнику 8 кл.: Учебное пособие для учащихся школ и классов с углубленным изучением математики.
Видео:4 С какой вероятностью центр окружности лежит внутри случайного вписанного треугольника?Скачать
Вписанная окружность
Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.
Теорема
В любой треугольник можно вписать окружность. |
Доказательство
Дано: произвольный АВС.
Доказать: в АВС можно вписать окружность.
Доказательство:
1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).
2. Точка О равноудалена от сторон АВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны АВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в АВС. Теорема доказана.
Замечание 1
В треугольник можно вписать только одну окружность. |
Доказательство
Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.
Замечание 2
Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности. |
Доказательство
На рисунке 2 мы видим, что АВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: . Тогда, по свойству площадей, площадь треугольника АВС выражается формулой: , где — периметр АВС. Что и требовалось доказать.
Замечание 3
Не во всякий четырехугольник можно вписать окружность. |
Доказательство
Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.
Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:
В любом описанном четырехугольнике суммы противоположных сторон равны. |
Доказательство
Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).
На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = и ВС + АD = , следовательно, АВ + СD = ВС + АD.
Верно и обратное утверждение:
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность. |
Доказательство
Пусть в выпуклом четырехугольнике АВСD
АВ + СD = ВС + АD. (1)
Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).
Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.
Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).
Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон
АВ + С1D1 = ВС1 + AD1. (2)
Но ВС1 = ВС — С1С, АD1 = АD — D1D, поэтому из равенства (2) получаем:
С1D1 + С1С + D1D = ВС + АD — АВ.
Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству
т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.
Поделись с друзьями в социальных сетях:
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Центр вписанной окружности лежит внутри треугольника а центр
Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность
Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.
Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.
Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.
Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности
- Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
- В любой треугольник можно вписать окружность, и только одну.
- Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac
$$ , где S — площадь треугольника, а $$p =frac$$ — полупериметр треугольника.
Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.
Окружность называется описанной около треугольника, если она проходит через три его вершины.
- Вокруг любого треугольника можно описать окружность, и только одну.
- В любом треугольнике сторона равна произведению диаметра описанной окружности и синуса противолежащего угла.
- Площадь треугольника равна отношению произведения длин всех его сторон к учетверенному радиусу окружности, описанной около этого треугольника: $$R =frac$$, где S — площадь треугольника.
- Центр вневписанной окружности лежит на пересечении биссектрис внешних углов, при вершинах касаемой стороны, и биссектрисы угла при третей вершине.
Окружность, вписанная в прямоугольный треугольник
- Радиус вписанной окружности находят по формулам: $$r = frac$$, и $$r = frac$$, где a и b катеты прямоугольного треугольника, а c гипотенуза прямоугольного треугольника.
Окружность, описанная около прямоугольного треугольника
- Центр описанной окружности совпадает с серединой гипотенузы.
- Радиус равен половине гипотенузы: $$R = frac$$.
- Радиус равен медиане, проведенной к гипотенузе: $$R = m_$$.
Четырехугольник, вписанный в окружность
- Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + beta + gamma +delta = 180^circ$$.
- Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
- Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
- Площадь: $$S = sqrt$$, где $$p = frac$$ — полупериметр четырехугольника.
Окружность, вписанная в ромб
- В любой ромб можно вписать окружность.
- Радиус r вписанной окружности: $$r = frac$$, где h — высота ромба или $$r = frac <d_cdot d_>$$, где a — сторона ромба, d1 и d2 — диагонали ромба.
📺 Видео
ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Радиус описанной окружностиСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Задача 6 №27926 ЕГЭ по математике. Урок 141Скачать
Строим вписанную в данный треугольник окружность (Задача 2).Скачать
Центр окружности описанной вокруг треугольникаСкачать
№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать
Треугольник и окружность #shortsСкачать
88 Центр описанной окружности треугольникаСкачать
Центр описанной около треугольника окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Где искать центр описанной окружности #геометрия #огэ #егэ #математикаСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать
Задание 16 ЕГЭ по математикеСкачать