Центр окружности вписанной в тупоугольный треугольник находится

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Центр окружности вписанной в тупоугольный треугольник находитсяСерединный перпендикуляр к отрезку
Центр окружности вписанной в тупоугольный треугольник находитсяОкружность описанная около треугольника
Центр окружности вписанной в тупоугольный треугольник находитсяСвойства описанной около треугольника окружности. Теорема синусов
Центр окружности вписанной в тупоугольный треугольник находитсяДоказательства теорем о свойствах описанной около треугольника окружности

Центр окружности вписанной в тупоугольный треугольник находится

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр окружности вписанной в тупоугольный треугольник находится

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр окружности вписанной в тупоугольный треугольник находится

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр окружности вписанной в тупоугольный треугольник находится

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр окружности вписанной в тупоугольный треугольник находится

Центр окружности вписанной в тупоугольный треугольник находится

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр окружности вписанной в тупоугольный треугольник находится

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр окружности вписанной в тупоугольный треугольник находится

Центр окружности вписанной в тупоугольный треугольник находится

Полученное противоречие и завершает доказательство теоремы 2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр окружности вписанной в тупоугольный треугольник находится

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности вписанной в тупоугольный треугольник находится,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр окружности вписанной в тупоугольный треугольник находится

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр окружности вписанной в тупоугольный треугольник находитсяВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр окружности вписанной в тупоугольный треугольник находитсяОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр окружности вписанной в тупоугольный треугольник находитсяЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр окружности вписанной в тупоугольный треугольник находитсяЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр окружности вписанной в тупоугольный треугольник находится
Площадь треугольникаЦентр окружности вписанной в тупоугольный треугольник находится
Радиус описанной окружностиЦентр окружности вписанной в тупоугольный треугольник находится
Серединные перпендикуляры к сторонам треугольника
Центр окружности вписанной в тупоугольный треугольник находится

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр окружности вписанной в тупоугольный треугольник находится

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр окружности вписанной в тупоугольный треугольник находится

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр окружности вписанной в тупоугольный треугольник находится

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр окружности вписанной в тупоугольный треугольник находится

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр окружности вписанной в тупоугольный треугольник находится

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности вписанной в тупоугольный треугольник находится,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр окружности вписанной в тупоугольный треугольник находится

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр окружности вписанной в тупоугольный треугольник находится

Для любого треугольника справедливо равенство:

Центр окружности вписанной в тупоугольный треугольник находится

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Геометрия Центр окружности, вписанной в прямоугольный треугольник удален от концов гипотенузы на aСкачать

Геометрия Центр окружности, вписанной в прямоугольный треугольник удален от концов гипотенузы на a

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр окружности вписанной в тупоугольный треугольник находится

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр окружности вписанной в тупоугольный треугольник находится

Центр окружности вписанной в тупоугольный треугольник находится.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр окружности вписанной в тупоугольный треугольник находится

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Окружность, вписанная в треугольник. Как найти центр и радиус. Геометрия 7-8 классСкачать

Окружность, вписанная в треугольник. Как найти центр и радиус. Геометрия 7-8 класс

Вписанная окружность

Центр окружности вписанной в тупоугольный треугольник находится

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Центр окружности вписанной в тупоугольный треугольник находится
    • Четырехугольник
      Центр окружности вписанной в тупоугольный треугольник находится
    • Многоугольник
      Центр окружности вписанной в тупоугольный треугольник находится

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

    №711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

    Окружность, вписанная в треугольник. Теоремы и их рассмотрение

    Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука «геометрия» от греческих слов «геос» — земля и «метрио» — измеряю.

    Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие — теорема Пифагора.

    Центр окружности вписанной в тупоугольный треугольник находится Вам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза

    Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:

    В треугольник можно вписать только одну окружность.

    При таком расположении окружность — вписанная, а треугольник — описанный около окружности.

    Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:

    Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.

    Видео:Построить окружность, вписанную в треугольникСкачать

    Построить окружность, вписанную в треугольник

    Окружность, вписанная в равнобедренный треугольник

    Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.

    На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено — она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.

    Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).

    Центр окружности вписанной в тупоугольный треугольник находится

    Свойства теоремы об окружности, вписанной в треугольник:

    • Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
    • Радиус окружности (вписанной) — это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Окружность, вписанная в прямоугольный треугольник

    Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.

    Центр окружности вписанной в тупоугольный треугольник находится

    Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.

    Есть хорошая формула, которая поможет высчитать площадь треугольника — периметр умножить на радиус вписанной в этот треугольник окружности.

    Видео:Радиус описанной окружностиСкачать

    Радиус описанной окружности

    Формулировка теоремы о вписанной окружности

    В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:

    Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

    Центр окружности вписанной в тупоугольный треугольник находится

    На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.

    Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

    Окружность вписана в равнобедренный треугольник. Найти её радиус.

    Теорема о центре окружности, вписанной в треугольник

    Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.

    Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.

    📽️ Видео

    Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

    Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #Shorts

    88 Центр описанной окружности треугольникаСкачать

    88 Центр описанной окружности треугольника

    №701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать

    №701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый

    Треугольник и окружность #shortsСкачать

    Треугольник и окружность #shorts

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Окружность и треугольникСкачать

    Окружность и треугольник

    Точка O центр окружности описанной около остроугольного треугольникаСкачать

    Точка O центр окружности описанной около остроугольного треугольника

    найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 классСкачать

    Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 класс

    Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

    Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.
    Поделиться или сохранить к себе: