Трапеция abcd описана около окружности ab cd точки касания

Решение №2566 Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.

Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.

а) Докажите, что ∠AOB = ∠COD = 90°.
б) Найдите отношение большего основания трапеции к меньшему, если известно, что АВ = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет frac площади трапеции ABCD.

Источник: Ященко ЕГЭ 2022 (36 вар)

а)

Трапеция abcd описана около окружности ab cd точки касания

Окружность вписана в углы: ∠ВAD, ∠ADC, ∠DCB и ∠CBA. Центр окружности, которая вписана в угол, расположен на биссектрисе этого угла, значит АО, DO, СО, ВОбиссектрисы и делят соответствующие углы пополам.

∠ВAD + ∠CBA = 180°
∠ADC + ∠DCB = 180°

Как односторонние углы, при параллельных прямых AD||ВС (основания трапеции) и секущих AB и СD соответственно.
Зная о биссектрисах поделим всё на 2:

Рассмотрим треугольники ΔАВО и ΔDCO, сумма углов любого треугольника равна 180°, тогда:

∠AOB = ∠COD = 90°

Что и требовалось доказать.

б) Найти: frac , если АВ = СD, S_=fraccdot S_ :

Трапеция abcd описана около окружности ab cd точки касания

Отрезки касательных к окружности, проведённые из одной точки, равны:

BM = BK
CM = CN
AK = AL
DL = DN

Т.к. AB = CD, то:

BK = СN = BM = CM = x
AK = DN = AL = DL = y

Проведём радиусы из точки О к касательным ВС и AD, тогда ОМ⊥ВС, OL⊥AD, точка О∈OM, O∈OL, значит МL это одна прямая и высота трапеции:

Трапеция abcd описана около окружности ab cd точки касания

Проведём ещё одну высоту трапеции СН:

Трапеция abcd описана около окружности ab cd точки касания

MC = LH, МCHL – прямоугольник, значит MC = LH = x , найдём HD:

HD = LD – LH = y – x

Из прямоугольного ΔСHD по теореме Пифагора найдём СН:

СН 2 + HD 2 = CD 2
CH 2 + (y – x) 2 = (y + x) 2
CH 2 = (y + x) 2 – (y – x) 2 = y 2 + 2xy + x 2 – y 2 + 2xy – x 2 = 4xy
CH=sqrt=2sqrt

Выразим площадь SABCD :

В четырёхугольнике проведём KMNL диагональ KN, прямые ВС и KN отсекают равные отрезки ВК = СN = x, значит они по теорема Фалеса параллельны ВС||KN, т.к. BC⊥LM, то KM⊥ML, значит угол между диагоналями ∠MSK = 90°.
Диагональ ML = 2sqrt , как высота трапеции.
Проведём BF||CD и пересекающая KN в точке Е. BCDF – параллелограмм, значит EN = BC = 2x.
Трапеция abcd описана около окружности ab cd точки касания

ΔАВF подобен ΔВКЕ (∠В – общий, ∠ВКЕ = ∠ВАF – соответственные). Из пропорциональности сторон найдём КЕ:

Найдём диагональ KN:

Выразим площадь SKMNL :

S_=fraccdot MLcdot KNcdot sin angle MSK=fraccdot 2sqrtcdot fraccdot sin 90^=sqrtcdot fraccdot 1= frac<4xysqrt>

Подставим выраженные площади с исходное отношение:

Т.к. у нас у большее основание, а х меньшее, то их отношение равно 6.

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Около окружности описана равнобочная трапеция ABCD с основаниями AD и ВС, М и К — точки касания окружности с А В и CD, Р — точка касания с AD. В каком отношении отрезок МК делится отрезком ВР

Видео:В трапеции ABCD AB=CD, ∠BDA=35° ... | ОГЭ 2017 | ЗАДАНИЕ 11 | ШКОЛА ПИФАГОРАСкачать

В трапеции ABCD AB=CD, ∠BDA=35° ... | ОГЭ 2017 | ЗАДАНИЕ 11 | ШКОЛА ПИФАГОРА

Ваш ответ

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,049
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС

Задача. Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.

а) Докажите, что ∠AOB = ∠COD = 90°.

б) Найдите отношение большего основания трапеции к меньшему, если известно, что АВ = CD, а площадь четырёхугольника с вершинами в точках касания окружности со всеми сторонами трапеции составляет 12/49 площади трапеции ABCD.

Трапеция abcd описана около окружности ab cd точки касанияа) По условию трапеция ABCD с основаниями AD и ВС описана около окружности с центром О, следовательно, точка О есть пересечение биссектрис всех углов трапеции. Так как сумма углов трапеции, прилегающих к боковой стороне АВ, равна 180°, то сумма половинок этих углов равна 90°. Таким образом в ΔАОВ

∠OАB + ∠АВО = 90°, значит, и ∠АОВ = 90°.

Аналогично, так как ∠BCD + ∠ADC = 180°, то в ΔСOD

∠OCD + ∠ODC = 90°, следовательно, и ∠COD = 90°. Доказано.

б) По условию равнобедренная трапеция ABCD с основаниями AD и ВС описана около окружности с центром О. Пусть эта окружность касается сторон трапеции в точках М, Р, N и К. Четырёхугольник MPNK является вписанным в данную окружность. Радиус, проведённый в точку касания перпендикулярен касательной.

РК – диаметр окружности, перпендикулярен к основаниям трапеции и проходит через их середины, так как длины касательных, проведённых из одной точки к окружности, равны. РК – ось симметрии данной трапеции и четырёхугольника МРNК. Будем рассматривать половину данной трапеции слева от РК.

Трапеция abcd описана около окружности ab cd точки касания

Трапеция abcd описана около окружности ab cd точки касанияПлощадь Δ МРК состоит из суммы площадей двух равновеликих треугольников МОР и МОК.

Действительно, площадь каждого из них равна половине произведения двух сторон (радиусов окружности) на синус угла (с вершиной в точке О) между ними; значения синусов смежных углов равны.

Проведём ОВ. Это биссектриса угла В трапеции ABCD.

В равнобедренном треугольнике МВР биссектриса ВТ является и медианой, и высотой (Т – середина МР, ВТ⟘МР). Тогда медиана ОТ (высота и биссектриса) делит равнобедренный треугольник ОМР на два равных треугольника РТО и МТО.

Аналогично рассуждая относительно ОА – биссектрисы угла А трапеции ABCD, делаем вывод, что равны треугольники МЕО и КЕО. Половинки равновеликих треугольников МОР и МОК также равновелики (и равны), значит, треугольник МРК состоит из четырёх равных треугольников, поэтому, разделив его площадь на 4, получим:

Трапеция abcd описана около окружности ab cd точки касания

Выделим эти треугольники жёлтым цветом.

Итак, в рассматриваемой прямоугольной трапеции АВРК остаются:

Δ ВТР = Δ ВТМ (закрасим зелёным цветом) и

Δ АЕК = Δ АЕМ (закрасим розовым цветом).

Сумма этих четырёх, попарно равных треугольников, равна

Трапеция abcd описана около окружности ab cd точки касания

Делим это значение пополам. Получаем:

Трапеция abcd описана около окружности ab cd точки касания

В задаче требуется найти отношение AD : BC.

Обозначим AD = a, BC = b.

Нам нужно найти значение a : b.

По свойству касательных, проведённых из одной точки к окружности:

Трапеция abcd описана около окружности ab cd точки касания

ОМ –радиус окружности, проведённый в точку касания, является высотой в прямоугольном треугольнике АОВ. По свойству пропорциональных отрезков в прямоугольном треугольнике

Трапеция abcd описана около окружности ab cd точки касания

РТ – высота прямоугольного треугольника ВРО, проведённая к гипотенузе ВО, делит треугольник ВРО на подобные треугольники ВТР и РТО с коэффициентом подобия, равным отношению сходственных сторон:

Трапеция abcd описана около окружности ab cd точки касания

Отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

Трапеция abcd описана около окружности ab cd точки касания

Точно так же, КЕ – высота прямоугольного Δ АКО, проведённая к гипотенузе АО, делит этот треугольник на подобные треугольники АЕК и КЕО. Тогда коэффициент их подобия:

Трапеция abcd описана около окружности ab cd точки касания

6t 2 -37t + 6 = 0. Решаем квадратное уравнение по общей формуле.

D = 37 2 -4 ∙ 6 ∙ 6 = 1369 -144 = 1225 = 35 2 ;

🎦 Видео

2116 около окружности описана трапеция периметр которой равен 120 Найдите её среднюю линиюСкачать

2116 около окружности описана трапеция периметр которой равен 120 Найдите её среднюю линию

🔴 В трапеции ABCD известно, что AB=CD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В трапеции ABCD известно, что AB=CD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,DСкачать

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,D

ЕГЭ 2022 16 вариант 3 задача.Скачать

ЕГЭ 2022 16 вариант 3 задача.

№346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольнаяСкачать

№346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольная

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

[ОГЭ] Найдите боковую сторону АВ трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120Скачать

[ОГЭ] Найдите боковую сторону АВ трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120

№552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:Скачать

№552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:

Задача.Скачать

Задача.

ЕГЭ. Трапеция, описанная около окружности.Скачать

ЕГЭ. Трапеция, описанная около окружности.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

ОГЭ по математике. Окружность - ваш гарантированный +1 баллСкачать

ОГЭ по математике. Окружность - ваш гарантированный +1 балл

Около окружности с центром О описана трапецияСкачать

Около окружности с центром О описана трапеция

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика
Поделиться или сохранить к себе: