Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.
а) Докажите, что ∠AOB = ∠COD = 90°.
б) Найдите отношение большего основания трапеции к меньшему, если известно, что АВ = CD, а площадь четырёхугольника с вершинами в точках касания окружности со сторонами трапеции составляет frac площади трапеции ABCD.
Источник: Ященко ЕГЭ 2022 (36 вар)
а)
Окружность вписана в углы: ∠ВAD, ∠ADC, ∠DCB и ∠CBA. Центр окружности, которая вписана в угол, расположен на биссектрисе этого угла, значит АО, DO, СО, ВО – биссектрисы и делят соответствующие углы пополам.
∠ВAD + ∠CBA = 180°
∠ADC + ∠DCB = 180°
Как односторонние углы, при параллельных прямых AD||ВС (основания трапеции) и секущих AB и СD соответственно.
Зная о биссектрисах поделим всё на 2:
Рассмотрим треугольники ΔАВО и ΔDCO, сумма углов любого треугольника равна 180°, тогда:
∠AOB = ∠COD = 90°
Что и требовалось доказать.
б) Найти: frac , если АВ = СD, S_=fraccdot S_ :
Отрезки касательных к окружности, проведённые из одной точки, равны:
BM = BK
CM = CN
AK = AL
DL = DN
Т.к. AB = CD, то:
BK = СN = BM = CM = x
AK = DN = AL = DL = y
Проведём радиусы из точки О к касательным ВС и AD, тогда ОМ⊥ВС, OL⊥AD, точка О∈OM, O∈OL, значит МL это одна прямая и высота трапеции:
Проведём ещё одну высоту трапеции СН:
MC = LH, МCHL – прямоугольник, значит MC = LH = x , найдём HD:
HD = LD – LH = y – x
Из прямоугольного ΔСHD по теореме Пифагора найдём СН:
СН 2 + HD 2 = CD 2
CH 2 + (y – x) 2 = (y + x) 2
CH 2 = (y + x) 2 – (y – x) 2 = y 2 + 2xy + x 2 – y 2 + 2xy – x 2 = 4xy
CH=sqrt=2sqrt
Выразим площадь SABCD :
В четырёхугольнике проведём KMNL диагональ KN, прямые ВС и KN отсекают равные отрезки ВК = СN = x, значит они по теорема Фалеса параллельны ВС||KN, т.к. BC⊥LM, то KM⊥ML, значит угол между диагоналями ∠MSK = 90°.
Диагональ ML = 2sqrt , как высота трапеции.
Проведём BF||CD и пересекающая KN в точке Е. BCDF – параллелограмм, значит EN = BC = 2x.
ΔАВF подобен ΔВКЕ (∠В – общий, ∠ВКЕ = ∠ВАF – соответственные). Из пропорциональности сторон найдём КЕ:
Найдём диагональ KN:
Выразим площадь SKMNL :
S_=fraccdot MLcdot KNcdot sin angle MSK=fraccdot 2sqrtcdot fraccdot sin 90^=sqrtcdot fraccdot 1= frac<4xysqrt>
Подставим выраженные площади с исходное отношение:
Т.к. у нас у большее основание, а х меньшее, то их отношение равно 6.
Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать
Около окружности описана равнобочная трапеция ABCD с основаниями AD и ВС, М и К — точки касания окружности с А В и CD, Р — точка касания с AD. В каком отношении отрезок МК делится отрезком ВР
Видео:В трапеции ABCD AB=CD, ∠BDA=35° ... | ОГЭ 2017 | ЗАДАНИЕ 11 | ШКОЛА ПИФАГОРАСкачать
Ваш ответ
Видео:Задача про трапецию, описанную около окружностиСкачать
Похожие вопросы
- Все категории
- экономические 43,282
- гуманитарные 33,619
- юридические 17,900
- школьный раздел 607,049
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС
Задача. Около окружности с центром О описана трапеция ABCD с основаниями AD и ВС.
а) Докажите, что ∠AOB = ∠COD = 90°.
б) Найдите отношение большего основания трапеции к меньшему, если известно, что АВ = CD, а площадь четырёхугольника с вершинами в точках касания окружности со всеми сторонами трапеции составляет 12/49 площади трапеции ABCD.
а) По условию трапеция ABCD с основаниями AD и ВС описана около окружности с центром О, следовательно, точка О есть пересечение биссектрис всех углов трапеции. Так как сумма углов трапеции, прилегающих к боковой стороне АВ, равна 180°, то сумма половинок этих углов равна 90°. Таким образом в ΔАОВ
∠OАB + ∠АВО = 90°, значит, и ∠АОВ = 90°.
Аналогично, так как ∠BCD + ∠ADC = 180°, то в ΔСOD
∠OCD + ∠ODC = 90°, следовательно, и ∠COD = 90°. Доказано.
б) По условию равнобедренная трапеция ABCD с основаниями AD и ВС описана около окружности с центром О. Пусть эта окружность касается сторон трапеции в точках М, Р, N и К. Четырёхугольник MPNK является вписанным в данную окружность. Радиус, проведённый в точку касания перпендикулярен касательной.
РК – диаметр окружности, перпендикулярен к основаниям трапеции и проходит через их середины, так как длины касательных, проведённых из одной точки к окружности, равны. РК – ось симметрии данной трапеции и четырёхугольника МРNК. Будем рассматривать половину данной трапеции слева от РК.
Площадь Δ МРК состоит из суммы площадей двух равновеликих треугольников МОР и МОК.
Действительно, площадь каждого из них равна половине произведения двух сторон (радиусов окружности) на синус угла (с вершиной в точке О) между ними; значения синусов смежных углов равны.
Проведём ОВ. Это биссектриса угла В трапеции ABCD.
В равнобедренном треугольнике МВР биссектриса ВТ является и медианой, и высотой (Т – середина МР, ВТ⟘МР). Тогда медиана ОТ (высота и биссектриса) делит равнобедренный треугольник ОМР на два равных треугольника РТО и МТО.
Аналогично рассуждая относительно ОА – биссектрисы угла А трапеции ABCD, делаем вывод, что равны треугольники МЕО и КЕО. Половинки равновеликих треугольников МОР и МОК также равновелики (и равны), значит, треугольник МРК состоит из четырёх равных треугольников, поэтому, разделив его площадь на 4, получим:
Выделим эти треугольники жёлтым цветом.
Итак, в рассматриваемой прямоугольной трапеции АВРК остаются:
Δ ВТР = Δ ВТМ (закрасим зелёным цветом) и
Δ АЕК = Δ АЕМ (закрасим розовым цветом).
Сумма этих четырёх, попарно равных треугольников, равна
Делим это значение пополам. Получаем:
В задаче требуется найти отношение AD : BC.
Обозначим AD = a, BC = b.
Нам нужно найти значение a : b.
По свойству касательных, проведённых из одной точки к окружности:
ОМ –радиус окружности, проведённый в точку касания, является высотой в прямоугольном треугольнике АОВ. По свойству пропорциональных отрезков в прямоугольном треугольнике
РТ – высота прямоугольного треугольника ВРО, проведённая к гипотенузе ВО, делит треугольник ВРО на подобные треугольники ВТР и РТО с коэффициентом подобия, равным отношению сходственных сторон:
Отношение площадей подобных треугольников равно квадрату их коэффициента подобия.
Точно так же, КЕ – высота прямоугольного Δ АКО, проведённая к гипотенузе АО, делит этот треугольник на подобные треугольники АЕК и КЕО. Тогда коэффициент их подобия:
6t 2 -37t + 6 = 0. Решаем квадратное уравнение по общей формуле.
D = 37 2 -4 ∙ 6 ∙ 6 = 1369 -144 = 1225 = 35 2 ;
🎦 Видео
2116 около окружности описана трапеция периметр которой равен 120 Найдите её среднюю линиюСкачать
🔴 В трапеции ABCD известно, что AB=CD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,DСкачать
ЕГЭ 2022 16 вариант 3 задача.Скачать
№346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольнаяСкачать
Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)Скачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать
[ОГЭ] Найдите боковую сторону АВ трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120Скачать
№552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:Скачать
Задача.Скачать
ЕГЭ. Трапеция, описанная около окружности.Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
ОГЭ по математике. Окружность - ваш гарантированный +1 баллСкачать
Около окружности с центром О описана трапецияСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать