Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.
Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.
Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.
В этом случае прямая называется секущей по отношению к окружности.
Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.
Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.
Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.
Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.
Видео:Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)Скачать
Касательная к окружности
О чем эта статья:
Видео:Прямая и окружность. Математика. 6 класс.Скачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Видео:8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
окружность с центральной точкой А;
прямая а — касательная к ней;
радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
Взаимное расположение прямой и окружности Выясним, сколько общих точек могут иметь прямая и окружность в зависимости от их взаимного расположения. Ясно, что если прямая проходит через центр окружности, то она пересекает окружность в двух концах диаметра, лежащего на. этой примой.
Пусть прямая р не проходит через центр О окружности радиуса r. Проведем перпендикуляр ОН к прямой р и обозначим буквой d длину этого перпендикуляра, т. е, расстояние от центра данной окружности до прямой (рис. 1). Исследуем взаимное расположение прямой и окружности в зависимости от соотношения между d и r. Возможны три случая.
1) d ОН= r (наклонная ОМ больше перпендикуляра ОН), и, следовательно , точка М не лежит на окружности. Итак, если расстояние от центра окружности до прямой равно радиусу то прямая и окружность имеют только одну общую точку.
3)d>r В этом случае -ОН>r поэтому .для любой точки М прямой р 0МОН.>r(рис.1,а) Следовательно точка М не лежит на окружности. Итак, .если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
Мы доказали, что прямая и окружность могут иметь одну или две общие точки и могут не иметь ни одной общей точки. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. На рисунке 2 прямая р — касательная к окружности с центром О, А— точка касания.
Докажем теорему о свойстве касательной.
Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Доказательство. Пусть р— касательная к окружности с центром О. А — точка касания (см. рис. 2). Докажем. что касательная р перпендикулярна к радиусу ОА.
Предположим, что это не так. Тогда радиус: ОА является наклонной к прямой р. Так как перпендикуляр, проведенный из точки О к прямой р, меньше наклонной ОА, то расстояния от центра О окружности до прямой р меньше радиуса. Следовательно, прямая р и окружность имеют две общие точки. Но это противоречит условию; прямая р — касательная. Таким образом, прямая р перпендикулярна к радиусу ОА. Теорема доказала.
Рассмотрим две касательные к окружности с центром О, проходящие через точку А и касающиеся окружности в точках В и С (рис. 3). Отрезки АВ и АС назовем отрезками касательных, проведенными из точки А. Они обладают следующим свойством, вытекающим из доказанной теоремы:
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Для доказательства этого утверждения обратимся к рисунку 3. По теореме о свойство касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, так как имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и 3=4, что и требовалось доказать. Докажем теперь теорему, обратную теореме о свойстве касательной (признак касательной).
Теорема. Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то онаявляется касательной.
Доказательство. Из условия теоремы следует, что данный радиус является перпендикуляром, проведенным из центра окружности к данной прямой. Поэтому расстояние от центра окружности до прямой равно радиусу, и, следовательно, прямая и окружность имеют только одну общую точку. Но это и означает, что данная прямая является касательной к окружности, Теорема доказана.
На этой теореме основано решение задач на построение касательной.
Прямая и окружность могут, очевидно, находиться только в следующих трех относительных положениях:
1) Расстояние (ОС) центра от прямой (АВ) (т. е, длина перпендикуляра ОС, опущенного из центра на прямую) больше радиуса окружности (рис. 1). Тогда точка С прямой удалена от центра больше, чем радиус, и потому лежит вне круга. Так как все остальные точки прямой удалены от О еще более, чем точка С (наклонные длиннее перпендикуляра), то они все лежат вне круга, значит, тогда прямая не имеет никаких точек, общих с окружностью.
2) Расстояние (ОС) центра от прямой меньше радиуса. В этом случае (рис.2) точка С лежит внутри круга и тогда, очевидно, прямая пересекается с окружностью.
3> Расстояние (ОС) центра от прямой равно радиусу. Тогда точна С (рис. 3) принадлежит и прямой, и окружности, все же остальные точки прямой, будучи удалены от О более, чем точка С, лежат вне круга. Значит, в этом случае Прямая и окружность имеют только одну общую точку, именно ту, которая служит основанием перпендикуляра, опущенного из центра на прямую.
Такая прямая, которая с окружностью имеет только одну общую точку, называется касательной к окружности; общая точка называется точкой касания.
Относительно касательной мы докажем следующие две теоремы (прямую и обратную) (рис. 4):
1)если прямая(MN) перпендикулярна к радиусу (ОА) в конце его (А), лежащем на окружности, то она касаетсяокружности, и обратно (рис. 4);
2)если прямая касается окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.
1) Точка А, как конец радиуса, лежащий на окружности, принадлежит этой окружности; в то же время она принадлежит и прямой MN, Значит, эта точка есть общая у окружности и прямой. Все же остальные точки прямой MN, как В, С и другие, отстоят от центра О дальше, чем на радиус (так как отрезки ОВ, ОС, . как наклонные, больше перпендикуляра ОА), и потому они лежат вне окружности. Таким образом, у прямой MN есть только одна точка (А), общая с окружностью, и, значит, прямая MN есть касательная.
2) Если МN касается окружности в точке А, то все остальные точки этой прямой должны лежать вне окружности; вследствие этого отрезки ОВ, ОС, . больше радиуса ОА (точка О есть центр окружности). Значит, этот радиус есть наименьший из отрезков, соединяющих точку О с любой точкой прямой MN, и потому ОА|MN.
Теорема. Если касательная параллельна хорде, то точка касания делит дугу, стягиваемую хордой, пополам.
Пусть прямая АВ касается окружности в точке М (рис. 5) и параллельна хорде CD; требуется доказать, что .
Проведя через точку касания диаметр МЕ, будем иметь: ; поэтому
Зависимость между дугами, хордами и расстояниями хорд от центра.
Теоремы. В одном круге или в равных кругах:
1) если дуги, равны, то стягивающие их хорды равны и одинаково удалены от центра;
2) если две дуги, меньшие полуокружности, не равны, то большая из них стягивается большей хордой и из обеих хорд большая расположена ближе к центру.
1) Пусть дуга АВ равна дуге CD (рис. 1), требуется доказать, что хорды АВ и CD равны, а также равны и перпендикуляры ОЕ и OF, опущенные из центра на хорды.
Повернем сектор OAJB вокруг центра О в направлении, указанном стрелкой на столько, чтобы радиус ОБ совпал с ОС. Тогда дуга ВА. пойдет по дуге CD и вследствие их равенства эти дуги совместятся. Значит, хорда AS совместится с хордой CD и перпендикуляр ОЕ совпадет с OF (из одной точки можно опустить на прямую только один перпендикуляр), т. е. AB=CD и OE=OF.
2) Пусть дуга АВ (рис. 2) меньше дуги CD, и притом обе дуги меньше полуокружности; требуется доказать, что хорда АВ меньше хорды CD, а перпендикуляр ОЕ больше перпендикуляра OF. Отложим на дуге CD дугу СК, равную АВ, и проведем вспомогательную хорду СК, которая, по доказанному, равна хорде АВ и одинаково с ней удалена от центра. У треугольников COD и СОК две стороны одного равны двум сторонам другого (как радиусы), а углы, заключенные между этими сторонами, не равны; в этом случае, как мы знаем, против большего из углов, т. е. lCOD, должна лежать большая сторона, значит, CD>CK, и потому CD>AB.
Для доказательства того, что OE>OF, проведем OLXCK и примем во внимание, что, по доказанному, OE=OL; следовательно, нам достаточно сравнить OF с OL. В прямоугольном треугольнике 0FM (покрытом на рисунке штрихами) гипотенуза ОМ больше катета OF; но OL>OM; значит, и подавно OL>OF. и потому OE>OF.
Теорема, доказанная нами для одного круга, остается верной и для равных кругов, потому что такие круги один от другого отличаются только положением.
Обратные теоремы. Так как в предыдущем параграфе рассмотрены всевозможные взаимно исключающие случаи относительно сравнительной величины двух дуг одного радиуса, причем получились взаимно исключающие выводы относительно сравнительной величины хорд и расстояний их от центра, то обратные предложения должны быть верны, в. именно:
В одном круге или е равных кругах:
1) равные хорды одинакова удалены от центра и стягивают равные дуги;
2)хорды, одинаково удаленные от центра, равны и стягивают равные дуги;
3) из двух неравных хорд большая ближе к центру и стягивает большую дугу;
4) из двух хорд, неодинаково удаленных от центра,которая ближе к центру, больше и стягивает большую дугу.
Эти предложения легко доказываются от противного. Например, для доказательства первого из них рассуждаем так: если бы данные хорды стягивали неравные дуги, то, согласно прямой теореме, они были бы не равны, что противоречит условию; значит, равные хорды должны стягивать равные дуги; а если дуги равны, то, согласно прямой теореме, стягивающие их хорды одинаково удалены от центра.
Теорема. Диаметр есть наибольшая из хорд.
Если соединим с центром О концы какой-нибудь хорды, не проходящей через центр, например хорды АВ (рис. 3) то получим треугольник АОВ, в котором одна сторона есть эта хорда, а две другие — радиусы, Но в треугольнике каждая сторона менее суммы двух других сторон; следовательно, хорда АВ менее суммы двух радиусов; тогда как всякий диаметр CD равен сумме двух радиусов. Значит, диаметр больше всякой хорды, не проходящей через центр. Но так как диаметр есть тоже хорда, то можно сказать, что диаметр есть наибольшая из хорд.
Как уже было сказано, отрезки касательных, проведенных к окружности из одной точки, имеют одинаковую длину. Эту длину называют касательным расстоянием от точки до окружности.
Без теоремы о касательных не обходиться решение не одной задачи о вписанных окружностях, иными словами, об окружностях, касающихся сторон многоугольника.
Касательные расстояния в треугольнике.
Найдем длины отрезков, на которые стороны треугольника АВС разбиваются точками касания с вписанной в него окружностью (рис. 1,а), например касательное расстояние tа от точки А до окружности. Сложим стороны b и c, а затем из суммы вычтем сторону а. Учитывая равенство касательных, проведенных из одной вершины, получим 2tа. Итак,
где p=(a+b+c)/2 – полупериметр данного треугольника. Длина отрезков сторон, прилегающим к вершинам В и С, равны соответственно p-b и p-c.
Аналогично, для вневписанной окружности треугольника, касающейся (снаружи) стороны а (рис. 1,б), касательные расстояния от В и С равны соответственно p-c и p-b, а от вершины А — просто p.
Заметим, что эти формулы можно использовать и «в обратную сторону».
Пусть в угол ВАС вписана окружность, причем касательное расстояние от вершины угла до окружности равноp илиp-a, гдеp – полупериметр треугольника АВС, а а=ВС. Тогда окружность касается прямой ВС (соответственно снаружи или внутри треугольника).
В самом деле, пусть, например, касательное расстояние равно p-a. Тогда наши окружности касаются сторон угла в тех же самых точках, что и вписанная окружность треугольника АВС, а значит, совпадает с ней. Следовательно, она касается прямой ВС.
Описанный четырехугольник. Из теоремы о равенстве касательных сразу получается (рис. 2,а), что
если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
Отметим, что описанный четырехугольник обязательно выпуклый. Верно и обратное:
Если четырехугольник выпуклый и суммы его противоположных сторон равны, то в него можно вписать окружность.
Докажем это для четырехугольника, отличного от параллелограмма. Пусть какие-то две противоположные стороны четырехугольника, например AB и DC, при продолжении пересекутся в точке Е (рис. 2,б). Впишем окружность в треугольник ADE. Ее касательное расстояние te до точки E выражается формулой
Но по условию суммы противоположных сторон четырехугольника равны, а значит, AD+BC=AB+CD, или AD=AB+CD-BC. Подставив это значение в выражение для te, получим
а это – полупериметр треугольника BCE. Из доказанного выше условия касания следует, что наша окружность касается BC.
Две касательные, проведённые к окружности из точки вне её, равны и образуют равные углы с прямой, соединяющей эту точку с центром, что следует из равенства прямоугольных треугольников АОВ и АОВ1
💥 Видео
Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать
Окружность и прямая: варианты взаимного расположенияСкачать
№13. Могут ли две плоскости иметь: а) только одну общую точку; б) только две общие точкиСкачать
Геометрия. 7 класс. Взаимное расположение прямой и окружности /13.04.2021/Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать
Взаимное расположение прямой и окружности Взаимное расположение двух окружностейСкачать