Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

Перевод Кантора И.А.


Подход 1Точки пересечения двух окружностей формулаТочки пересечения двух окружностей формула

Будем рассматривать нашу задачу из системы координат с началом в центре первой окружности.

Определить центр окружности по каноническому уравнению вида Ax 2 + Ay 2 + a1x + a2y + a0 = 0, где A =/= 0, довольно просто — это (-a1/2A, -a2/2A);

перенести систему координат можно простым преобразованием

— подставить вместо старых переменных их новые значения в уравнения.

В такой системе координат уравнения окружностей можно записать как

(1) x 2 + y 2 = R 2 (2)(x-a) 2 + (y-b) 2 = r 2

Раскрывая скобки, вычитая (1) из (2) и приводя подобные, получаем другой вид (2):

-2ax-2by = R 2 — r 2 — a 2 — b 2 .

Если еще упростить и немного поменять обозначения, то (2) приведется к виду

ax+by=C, где С — новое обозначение выражения справа.

Таким образом, имеем систему:

(1) x 2 + y 2 = R 2 (2) ax + by = C,

решение которой, надеюсь, не составит проблем (например, подойдет подстановка — естественно с учетом случаев a=0, b=0 и т.п.) (2) в (1) и имеем простое квадратное уравнение на одну из переменных.

Решив его и получив из (2) значение оставшейся переменной, имеем(если и только если она есть) точку пересечения.


Подход 2Точки пересечения двух окружностей формулаТочки пересечения двух окружностей формула

Пусть нужно найти пару точек P3 пересечения, если они существуют.

Точки пересечения двух окружностей формула

Для начала найдем расстояние между центрами окружностей. d = || P1 — P0 ||. Если d > r0 + r1, тогда решений нет: круги лежат отдельно. Аналогично в случае d a 2 + h 2 = r0 2 and b 2 + h 2 = r1 2

Используя равенство d = a + b, мы можем разрешить относительно a:

a = (r0 2 — r1 2 + d 2 ) / (2 d)

В случае соприкосновения окружностей, это, очевидно, превратится в r0, так как: d = r0 + r1

Решим относительно h, подставив в первое уравнение h 2 = r0 2 — a 2

Таким образом, получаем координаты точек P3 = (x3,y3):

Видео:Взаимное расположение окружностей. Точки пересечения окружностейСкачать

Взаимное расположение окружностей. Точки пересечения окружностей

Пересечение двух окружностей

Этот онлайн калькулятор находит точки пересечения двух окружностей, если они существуют

Чтобы использовать калькулятор, введите координаты x и y центра и радиус каждой окружности.

Формулы для расчета приведены под калькулятором.

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей

Первая окружность

Вторая окружность

Видео:Алгоритмы. Пересечение окружностейСкачать

Алгоритмы. Пересечение окружностей

Пересечение окружностей

Сама по себе задача нахождения точек пересечения двух окружностей достаточно проста, однако предварительно надо проанализировать если ли вообще точки пересения у данных двух окружностей. Поэтому начать надо с вычисления расстояния d в декартовых координатах между центрами окружностей и сравнения его с радиусами окружностей r1 и r2.

При этом возможно следующие случаи (расстояние между центрами показано красным отрезком):

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

Точки пересечения двух окружностей формула

СлучайОписаниеУсловие
Тривиальный случай — окружности совпадают (это одна и та же окружность)
Окружности не касаются друг другаr1 + r2″ />
Одна окружность содержится внутри другой и не касается ее
Окружности пересекаются в двух точкахНе выполнено ни одно из условий выше
Окружности соприкасаются в одной точкеЧастный случай предыдущего

Если окружности действительно пересекаются, калькулятор использует следующие формулы (в-основном выведенные из теоремы Пифагора), проиллюстрированные рисунком ниже:

Сначала калькулятор находит отрезок a

Чтобы найти точку P3, калькулятор использует следующую формулу (в векторном виде):

И наконец, чтобы найти точки пересечения, калькулятор использует следующие уравнения:
Первая точка:

Обратите внимание на разные знаки перед вторым слагаемым

По теме также можно посмотреть следующие ссылки (на английском языке): Circle-Circle Intersection и Circles and spheres

Видео:Пересечение двух окружностейСкачать

Пересечение двух окружностей

Пересечение двух окружностей

Даны две окружности, каждая определена координатами своего центра и радиусом. Требуется найти все их точки пересечения (либо одна, либо две, либо ни одной точки, либо окружности совпадают).

Видео:9 класс, 8 урок, Взаимное расположение двух окружностейСкачать

9 класс, 8 урок, Взаимное расположение двух окружностей

Решение

Предположим, не теряя общности, что центр первой окружности — в начале координат (если это не так, то перенесём центр в начало координат, а при выводе ответа будем обратно прибавлять координаты центра). Тогда мы имеем систему двух уравнений:

Вычтем из второго уравнения первое, чтобы избавиться от квадратов переменных:

Таким образом, мы свели задачу о пересечении двух окружностей к задаче о пересечении первой окружности и следующей прямой:

А решение последней задачи описано в соответствующей статье.

Единственный вырожденный случай, который надо рассмотреть отдельно — когда центры окружностей совпадают. Действительно, в этом случае вместо уравнения прямой мы получим уравнение вида 0 = С, где C — некоторое число, и этот случай будет обрабатываться некорректно. Поэтому этот случай нужно рассмотреть отдельно: если радиусы окружностей совпадают, то ответ — бесконечность, иначе — точек пересечения нет.

💥 Видео

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

Точки пересечения графиков линейных функций. 7 класс.Образовательный

Геометрия В точках пересечения двух окружностей с радиусами 4 и 8 см касательные к ним взаимноСкачать

Геометрия В точках пересечения двух окружностей с радиусами 4 и 8 см касательные к ним взаимно

Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.Скачать

Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.

Взаимное расположение окружностей. 7 класс.Скачать

Взаимное расположение окружностей. 7 класс.

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностейСкачать

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностей

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Метод эксцентрических сферСкачать

Метод эксцентрических сфер

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Алгоритмы. Пересечение отрезков.Скачать

Алгоритмы. Пересечение отрезков.

Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой
Поделиться или сохранить к себе: