Вписанные и описанные треугольники четырехугольники

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Вписанные и описанные треугольники четырехугольники

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Вписанные и описанные треугольники четырехугольники

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Вписанные и описанные треугольники четырехугольники

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Вписанные и описанные треугольники четырехугольники

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Вписанная окружность (описанный треугольник, описанный четырехугольник)

Факт 1.
(bullet) Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла.
(bullet) Каждая точка биссектрисы угла равноудалена от его сторон.

Вписанные и описанные треугольники четырехугольники

Факт 2.
(bullet) Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис углов треугольника.

Вписанные и описанные треугольники четырехугольники

Факт 3.
(bullet) Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
(bullet) Наоборот: если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.
Центр вписанной окружности лежит на пересечении биссектрис углов четырехугольника.

Вписанные и описанные треугольники четырехугольники

Факт 4.
(bullet) Центр вписанной в многоугольник окружности лежит на пересечении биссектрис его углов.
(bullet) 1. Если в параллелограмм можно вписать окружность, то он является ромбом.
Тогда центр окружности лежит на пересечении диагоналей.
(bullet) 2. Если в прямоугольник можно вписать окружность, то он является квадратом.
Тогда центр окружности лежит на пересечении диагоналей.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Четырехугольники, вписанные в окружность. Теорема Птолемея

Вписанные и описанные треугольники четырехугольникиВписанные четырехугольники и их свойства
Вписанные и описанные треугольники четырехугольникиТеорема Птолемея

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Вписанные и описанные треугольники четырехугольники

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Вписанные и описанные треугольники четырехугольники

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписанные и описанные треугольники четырехугольники
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Вписанные и описанные треугольники четырехугольники

ФигураРисунокСвойство
Окружность, описанная около параллелограммаВписанные и описанные треугольники четырехугольникиОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаВписанные и описанные треугольники четырехугольникиОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииВписанные и описанные треугольники четырехугольникиОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаВписанные и описанные треугольники четырехугольникиОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникВписанные и описанные треугольники четырехугольники

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписанные и описанные треугольники четырехугольники
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Вписанные и описанные треугольники четырехугольники

Окружность, описанная около параллелограмма
Вписанные и описанные треугольники четырехугольникиОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Вписанные и описанные треугольники четырехугольникиОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Вписанные и описанные треугольники четырехугольникиОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Вписанные и описанные треугольники четырехугольникиОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Вписанные и описанные треугольники четырехугольники
Окружность, описанная около параллелограмма
Вписанные и описанные треугольники четырехугольники

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаВписанные и описанные треугольники четырехугольники

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииВписанные и описанные треугольники четырехугольники

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаВписанные и описанные треугольники четырехугольники

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникВписанные и описанные треугольники четырехугольники

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписанные и описанные треугольники четырехугольники

Вписанные и описанные треугольники четырехугольники

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Вписанные и описанные треугольники четырехугольники

Видео:8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Вписанные и описанные треугольники четырехугольники

Докажем, что справедливо равенство:

Вписанные и описанные треугольники четырехугольники

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Вписанные и описанные треугольники четырехугольники

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Вписанные и описанные треугольники четырехугольники

откуда вытекает равенство:

Вписанные и описанные треугольники четырехугольники(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

📽️ Видео

Тема 9. Вписанные и описанные четырехугольникиСкачать

Тема 9. Вписанные и описанные четырехугольники

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕСкачать

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕ

СРЕДНЯЯ ЛИНИЯ. ТРАПЕЦИЯ. ВПИСАННЫЕ И ОПИСАННЫЕ ЧЕТЫРЕХУГОЛЬНИКИ. Контрольная № 2 Геометрия 8 классСкачать

СРЕДНЯЯ ЛИНИЯ. ТРАПЕЦИЯ. ВПИСАННЫЕ И ОПИСАННЫЕ ЧЕТЫРЕХУГОЛЬНИКИ. Контрольная № 2 Геометрия 8 класс

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математикеСкачать

Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математике

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Вписанные и описанные четырехугольникиСкачать

Вписанные и описанные четырехугольники

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/Скачать

Геометрия. 9 класс. Вписанные и описанные четырехугольники /20.04.2021/

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность
Поделиться или сохранить к себе: