Теорема о выпуклом четырехугольнике и окружности

Четырехугольники, вписанные в окружность. Теорема Птолемея
Теорема о выпуклом четырехугольнике и окружностиВписанные четырехугольники и их свойства
Теорема о выпуклом четырехугольнике и окружностиТеорема Птолемея

Видео:Теоремы об окружностях для четырехугольниковСкачать

Теоремы об окружностях для четырехугольников

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Теорема о выпуклом четырехугольнике и окружности

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Теорема о выпуклом четырехугольнике и окружности

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Теорема о выпуклом четырехугольнике и окружности
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Теорема о выпуклом четырехугольнике и окружности

ФигураРисунокСвойство
Окружность, описанная около параллелограммаТеорема о выпуклом четырехугольнике и окружностиОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаТеорема о выпуклом четырехугольнике и окружностиОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииТеорема о выпуклом четырехугольнике и окружностиОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаТеорема о выпуклом четырехугольнике и окружностиОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникТеорема о выпуклом четырехугольнике и окружности

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Теорема о выпуклом четырехугольнике и окружности
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Теорема о выпуклом четырехугольнике и окружности

Окружность, описанная около параллелограмма
Теорема о выпуклом четырехугольнике и окружностиОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Теорема о выпуклом четырехугольнике и окружностиОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Теорема о выпуклом четырехугольнике и окружностиОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Теорема о выпуклом четырехугольнике и окружностиОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Теорема о выпуклом четырехугольнике и окружности
Окружность, описанная около параллелограмма
Теорема о выпуклом четырехугольнике и окружности

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаТеорема о выпуклом четырехугольнике и окружности

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииТеорема о выпуклом четырехугольнике и окружности

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаТеорема о выпуклом четырехугольнике и окружности

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникТеорема о выпуклом четырехугольнике и окружности

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Теорема о выпуклом четырехугольнике и окружности

Теорема о выпуклом четырехугольнике и окружности

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Теорема о выпуклом четырехугольнике и окружности

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Теорема о выпуклом четырехугольнике и окружности

Докажем, что справедливо равенство:

Теорема о выпуклом четырехугольнике и окружности

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Теорема о выпуклом четырехугольнике и окружности

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Теорема о выпуклом четырехугольнике и окружности

откуда вытекает равенство:

Теорема о выпуклом четырехугольнике и окружности(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, вписанная в четырехугольник

Определение 1. Окружность называют вписанным в четырехугольник, если окружность касается всех сторон четырехугольника.

На рисунке 1 окружность вписан в четырехугольник ABCD. В этом случае говорят также, что четырехугольник описан около окружности.

Теорема о выпуклом четырехугольнике и окружности

Теорема 1. Если окружность вписан в четырехугольник, то сумма противолежащих сторон четырехугольника равны.

Доказательство. Пусть окружность ABCD вписан в четырехугольник (Рис.2). Докажем, что ( small AB+CD=AD+BC ).

Теорема о выпуклом четырехугольнике и окружности

Точки M, N, Q, P − точки касания окружности со сторонами четырехугольника. Так как отрезки касательных, проведенных к окружности через одну точку, равны (статья Касательная к окружности теорема 2), то

( small AM=AQ=a, ) ( small BM=BN=b, ) ( small CN=CP=c, ) ( small DQ=DP=d )
( small AB+CD ) ( small=AM+BM+CP+DP ) ( small =a+b+c+d, )(1)
( small AD+BC) ( small=AQ+DQ+BN+CN) ( small=a+d+b+c. )(2)

Из равенств (1) и (2), следует:

( small AB+CD=AD+BC. ) Теорема о выпуклом четырехугольнике и окружности

Теорема 2. Если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Пусть задан выпуклый четырехугольник ABCD и пусть ( small AB+CD=AD+BC. ) (Рис.3). Докажем, что в него можно вписать окружность.

Теорема о выпуклом четырехугольнике и окружности

Проведем биссектрисы углов A и B четырехугольника ABCD. Точку их пересечения обозначим буквой O. Тогда точка O равноудалена от сторон AB, BC, AD. Следовательно существует окружность с центром в точке O, которая касается этих трех сторон.

Пусть эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.

Проведем касательную C1D1 к окружности, параллельно стороне CD четырехугольника.

Тогда окружность с центром O вписан в четырехугольник ABC1D1. Следовательно, по теореме 1, имеем:

( small AB+C_1D_1=AD_1+BC_1. )(3)

Но по условию данной теоремы:

( small AB+CD=AD+BC. )(4)

Вычтем из равенства (4) равенство (3):

( small CD-C_1D_1) (small=AD-AD_1+BC-BC_1 )
( small CD-C_1D_1=DD_1+CC_1 )
( small CD=DD_1+CC_1+C_1D_1)

Получили, что в четырехугольнике CC1D1D длина одной стороны равна сумме длин трех остальных сторон, что невозможно (см. задачу 1 статьи Четырехугольник).

Таким образом сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью (Рис.4).

Теорема о выпуклом четырехугольнике и окружности

Аналогичными рассуждениями можно показать, что сторона CD не может иметь две общие точки с построенной окружностью.

Следовательно, предполагая, что построенная окружность не касается стороны CD, мы пришли к противоречию. Таким образом, если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.Теорема о выпуклом четырехугольнике и окружности

Если в четырехугольник вписан окружность, то существует точка, равноудаленная от всех сторон четырехугольника. Эта точка является центром вписанной в четырехугольник окружности. Для нахождения этой точки достаточно найти точку пересечениия биссектрис двух соседних углов данного четырехугольника.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Выпуклый четырехугольник

Определения

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Диагональ четырехугольника – отрезок, соединяющий любые две несоседние вершины.

Различают выпуклые и невыпуклые четырехугольники.

Четырехугольник называется выпуклым, если он находится в одной полуплоскости относительно прямой, содержащей любую его сторону.

В школьном курсе рассматриваются только выпуклые четырехугольники. Поэтому далее “выпуклый четырехугольник” будем сокращенно называть “четырехугольник”.

Теорема

Сумма внутренних углов любого четырехугольника равна (360^circ) .

Доказательство

Теорема о выпуклом четырехугольнике и окружности

Рассмотрим четырехугольник (ABCD) и проведем его диагональ (AC) . Она разбила четырехугольник на два треугольника. Сумма углов любого треугольника равна (180^circ) , следовательно:

[begin 360^circ=180^circ+180^circ=(angle DAC+angle D+angle ACD) + (angle CAB+angle B+angle ACB)=\ =angle D+angle B +(angle DAC+angle CAB)+(angle ACD+angle ACB)=angle D+angle B+angle A+angle C end]

Теорема Вариньона

Выпуклый четырехугольник, вершинами которого являются середины сторон произвольного четырехугольника, является параллелограммом.

Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Средняя линия треугольника”.

Теорема о выпуклом четырехугольнике и окружности

Проведем диагонали четырехугольника (ABCD) . Рассмотрим (triangle ABC) : (MN) – средняя линия этого треугольника, следовательно, (MNparallel AC) .

Рассмотрим (triangle ADC) : (PK) – средняя линия этого треугольника, следовательно, (PKparallel AC) .

Таким образом, (MNparallel ACparallel PK) .

Аналогичным образом доказывается, что (MPparallel BDparallel NK) .

Следовательно, по определению (MNKP) – параллелограмм.

Теорема

Если в четырехугольнике (ABCD) диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон равны: [AB^2+CD^2=BC^2+AD^2]

Доказательство

По теореме Пифагора:

Из равенств видно, что (AB^2+CD^2=x^2+a^2+y^2+b^2=BC^2+AD^2)

Замечание

Все известные четырехугольники, изучаемые в школьной программе, подчиняются следующей схеме:

Теорема о выпуклом четырехугольнике и окружности

Таким образом, любой четырехугольник из этой схемы обладает свойствами всех предыдущих четырехугольников, из которых он следует.

Например, прямоугольник обладает свойствами параллелограмма и произвольного выпуклого четырехугольника; квадрат обладает свойствами прямоугольника, параллелограмма, выпуклого четырехугольника.

🔥 Видео

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностью

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

ЕГЭ 2022 Планиметрия Теорема Птолемея. Вписанный четырёхугольникСкачать

ЕГЭ 2022 Планиметрия Теорема Птолемея. Вписанный четырёхугольник

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy
Поделиться или сохранить к себе: