Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:теорема о произведении отрезков секущихСкачать

Отрезки и прямые, связанные с окружностью
| Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
| Окружность | ![]() | |||||||||||||||||||||||||||
| Круг | ![]() | |||||||||||||||||||||||||||
| Радиус | ![]() | |||||||||||||||||||||||||||
| Хорда | ![]() | |||||||||||||||||||||||||||
| Диаметр | ![]() | |||||||||||||||||||||||||||
| Касательная | ![]() | |||||||||||||||||||||||||||
| Секущая | ![]() | |||||||||||||||||||||||||||
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках
Видео:9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.Скачать

Свойства хорд и дуг окружности
| Фигура | Рисунок | Свойство |
| Диаметр, перпендикулярный к хорде | ![]() | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
| Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
| Равные хорды | ![]() | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
| Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
| Две хорды разной длины | ![]() | Большая из двух хорд расположена ближе к центру окружности. |
| Равные дуги | ![]() | У равных дуг равны и хорды. |
| Параллельные хорды | ![]() | Дуги, заключённые между параллельными хордами, равны. |
| Диаметр, перпендикулярный к хорде |
![]() |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Большая из двух хорд расположена ближе к центру окружности.

У равных дуг равны и хорды.

Дуги, заключённые между параллельными хордами, равны.
Видео:Теорема об отрезках хорд и секущихСкачать

Теоремы о длинах хорд, касательных и секущих
| Фигура | Рисунок | Теорема | ||||||||||||||||
| Пересекающиеся хорды | ![]() | |||||||||||||||||
| Касательные, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Касательная и секущая, проведённые к окружности из одной точки | ![]() | |||||||||||||||||
| Секущие, проведённые из одной точки вне круга | ![]() | |||||||||||||||||
| Пересекающиеся хорды | ||
![]() | ||
| Касательные, проведённые к окружности из одной точки | ||
![]() | ||
| Касательная и секущая, проведённые к окружности из одной точки | ||
![]() | ||
| Секущие, проведённые из одной точки вне круга | ||
![]() | ||
| Пересекающиеся хорды |
![]() |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Секретная теорема из учебника геометрииСкачать

Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Свойство секущих
Теорема
Для каждой из секущих, проведённых из одной точки, произведение длины секущей на длину её внешней части есть величина постоянная.

AB∩окр. (O; R)=F, AC∩окр. (O; R)=K

∠ABK=∠ACF (как вписанные углы, опирающиеся на одну дугу FK).
Следовательно, треугольники ABK и ACF подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
По основному свойству пропорции:
Что и требовалось доказать.

1) Проведём отрезки FK и BC.
2) Так как четырёхугольник BFKC — вписанный в окружность, то сумма его противолежащих углов равна 180º:
∠BCK+∠BFK=180º. Следовательно, ∠BFK=180º-∠BCK.
3) ∠AFK+∠BFK=180º (как смежные). Отсюда,

У них ∠ACB=∠AFK (так как ∠AFK=∠BCK по доказанному), ∠A — общий угол. Следовательно, треугольники ABC и AKF — подобны (по двум углам).
Что и требовалось доказать .
При решении задач будем использовать свойство секущих, а также запомним полученные в ходе доказательства теоремы факты о подобии треугольников, образованных секущими. Причем подобие треугольников ABC и AKF можно доказывать как приведённым выше способом, так и опираясь на свойство секущих.
Видео:Теорема о произведении отрезков пересекающихся хорд.Скачать

Справочник репетитора по математике. Свойства окружности и ее элементов
Теоретические справочные материалы по геометрии для выполнения заданий от репетитора по математике. В помощь ученикам при решении задач.
1) Терема о вписанном угле в окружность.


2) Следствия из теоремы о вписанном угле в окружность.
2.1) Свойство углов, опирающихся на одну дугу.

Теорема: если вписанные углы опираются на одну дугу, то они равны (если они опираются на дополнителные дуги, их сумма равна
2.2) Свойство угла, опирающегося на диаметр. 
Теорема: вписанный угол в окружность опирается на диаметр тогда и только тогда, когда он прямой.
AC-диаметр
3) Cвойство отрезков касательных. Окружность, вписанная в угол. 
Теорема 1: если из одной точки, не лежащей на окружности, проведены к ней две касательные, то их отрезки равны, то есть PB=PC.
Теорема 2: Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть PO-биссектриса.
4) Свойство отрезков хорд при внутреннем пересечении секущих.



Теорема 2: угол между хордами равен полусумме дуг, которые этими хордами образуются на окружности, то есть
5) Свойство отрезков хорд при внешнем пересечении секущих. 
Теорема 1: произведение отрезков одной секущей равно произведению отрезков другой, то есть


Теорема 2: угол между секущими равен полуразности соответствующих им дуг, то есть
Комментарий репетитора по математике: Обратитте внимание на общую закономерность 4-го и 5-го свойства: хорды в произведениях не участвуют, а сами равенства (с частями и продолжениями хорд) при сохранении обозначений являются точной копией друг друга. Также можно подметить общую структуру равенств с дугами. Репетитору по математике стоит обратить на этих особенностях внимание ученика.
6) Свойства квадрата отрезка касательной 
Теорема 1: Квадрат отрезка касательной равен произведению отрезков секущей, то есть

Теорема 2:угол между касательной и секущей равен полуразности соответствующих им дуг, то есть
7) Угол между касательной и секущей 
Теорема:угол между касательной и секущей, проведенными из одной точки окружности, равен поливине дуги, которую отсекает сукущая (половине центрального угла, соответствующего данной дуге).

Колпаков Александр Николаевич, репетитор по математике.
Уважаемый коллега, ваш материал на сайте является для меня хорошим методическим подспорьем. Спасибо.
Александр Николаевич, спасибо за методики, я восхищена Вашим трудолюбием и профессионализмом.
Уважаемый Александр Николаевич! Полезность вашего материала безгранична! Огромнейшее спасибо за справочные материалы, их оформление. Я еще не со всеми ознакомилась. Спасибо за помощь репетиторам по математике, школьным преподавателям и ученикам! Вы Учитель с большой буквы!
Спасибо за хороший материал, готовимся к олимпиаде по математике.
Александр Николаевич, большое спасибо за материал! У меня завтра экзамен, и ваш труд поможет сдать мне его на хорошую оценку. Так, как я поняла все по ваши справочникам, мне не объяснит ни один учитель — репетитор. Спасибо вам большое!
📺 Видео
Теорема о произведении отрезков хорд. Теорема о секущих и касательной.Скачать

Теорема о касательной и секущейСкачать

Пропорциональность отрезков хорд, касательных и секущих. Геометрия 9 классСкачать

Пропорциональные отрезки круга. 9 класс.Скачать

Теоремы о хордах, касательной и секущей окружностиСкачать

Докажите, что произведение отрезков одной хорды равно произведению отрезков другой хордыСкачать

#2str. Счет отрезковСкачать

Теорема о двух секущих. 9 класс.Скачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Свойства отрезков хорд, касательных и секущих. Решение задач.Скачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

Свойства отрезков, хорд, секущих и касательных.Скачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

Отрезки и прямые, связанные с окружностью












































