Теорема о параллельных прямых отсекающих равные отрезки

3. Теорема Фалеса

Теория:

Теорема о параллельных прямых отсекающих равные отрезки

Необходимо разделить отрезок (AB) на (7) равных частей.

Нарисуем угол, на одной стороне которого лежит отрезок (AB). Сторону угла (BC) нарисуем по клеточкам

и используем клеточки для деления стороны на (7) равных частей:
(BD = DE = EF = FG = GH = HJ = JC).

Концы обоих отрезков соединяем, получаем (AC).

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Теорема Фалеса

Теорема Фалеса может быть сформулирована не только для угла, но и для прямых. Кроме того, существует еще и обобщенная теорема Фалеса.

Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Теорема о параллельных прямых отсекающих равные отрезки

Теорема о параллельных прямых отсекающих равные отрезки

Теорема Фалеса может быть сформулирована не только для угла, но и для прямых.

Если параллельные прямые пересекают две данные прямые и отсекают на одной прямой равные отрезки, то они отсекают равные отрезки и на другой прямой.

Теорема о параллельных прямых отсекающих равные отрезки

Теорема о параллельных прямых отсекающих равные отрезки

Теорема о пропорциональных отрезках (обобщенная теорема Фалеса).

Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.

Теорема о параллельных прямых отсекающих равные отрезки

Теорема о параллельных прямых отсекающих равные отрезки

Теорема Фалеса и ее модификации применяется в том числе, и в задачах на построение (в частности, для деления отрезка на n равных частей и при построении четвертого пропорционального отрезка).

Видео:Геометрия 8 класс (Урок№5 - Теорема Фалеса)Скачать

Геометрия 8 класс (Урок№5 - Теорема Фалеса)

Теорема Фалеса

Одна из основополагающих теорем (теорема Фалеса) в геометрии говорит о том, что проведенные через концы одинаковых отрезков прямой параллельные линии отсекают на другой прямой тоже одинаковые по длине отрезки. Причем происходит это независимо от угла между прямыми. Это достаточно произвольная формулировка теоремы Фалеса, но достаточно емко описывающая ее суть. Разные учебники приводят разные формулировки, но суть остается неизменной.

Ключевые слова в теореме (при любой формулировке) — прямые, отрезки, равные, пропорциональные, параллельные. Это говорит о том, что теорема Фалеса касается только планиметрии, то есть изображения линий на плоскости. Она очень важна для картографии и навигации, широко используется в архитектуре и живописи, строительстве и проектировании.

Классической формулировки, единой в своем роде нет. Например, формулировку можно услышать в такой редакции:

Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.

Теорема о параллельных прямых отсекающих равные отрезки

А можно и в такой:

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Теорема о параллельных прямых отсекающих равные отрезки

Если внимательно присмотреться, то можно увидеть, что одно утверждение не противоречит другому, а рисунки практически идентичны. Если продолжить прямые на первом рисунке по получим тот же угол.

Кроме прямых, которые проходят под углом, такая же картина происходит при пересечении параллельных прямых. Разница состоит в том, что на пересекающихся прямых отрезки АВ и А1В1 могут быть как одинаковыми, так и пропорциональными, в зависимости от угла наклона секущих. А для случая параллельных — только одинаковыми. Если обобщить два случая, то обобщенная теорема Фалеса звучит так: Параллельные прямые отсекают на секущих пропорциональные отрезки.

Для иллюстрации можно воспользоваться рисунком 1.

Видео:Теорема Фалеса. 8 класс.Скачать

Теорема Фалеса. 8 класс.

Как пользоваться теоремой Фалеса на практике

Теорема Фалеса это не только теоретическое утверждение, доказанное методами математики, но и практический инструмент для построения различных фигур. Простейшая задача — разделить на равные части произвольный отрезок ВА. Пусть этих частей будет 7.

Теорема о параллельных прямых отсекающих равные отрезки

Для решения задачи нарисуем отрезок ВС, образующий с данным ВА угол. Как видим, отрезок ВС проходит вдоль клеток на бумаге, что позволяет выбрать на нем равные отрезки. В нашем случае, это:

BD=DE=EF=FG=GH=HJ=JC.

Начиная от крайних точек А и С проведем параллельные линии, пересекающие отрезок ВА. На нем тоже получиться семь равных отрезков: BR=RP=PN=NM=ML=LK=KA.

С таким же успехом мы можем разделить отрезок на 5, 6, 4 или любое другое количество равных частей. Суть метода состоит в том, что длину отрезка ВС мы заведомо выбираем такой, чтобы его можно было легко разделить на заданное количество частей. Например, длина отрезка ВА 37 см, а его нужно разделить на 5 частей. Выбираем длину отрезка ВС в 25 см, отмечаем точки и выполняем построение по теореме Фалеса.

Видео:Пропорциональные отрезки. Теорема о пропорциональных отрезкахСкачать

Пропорциональные отрезки. Теорема о пропорциональных отрезках

Обратная теорема Фалеса

Не менее широко используется и теорема, названная обратной. То есть, доказательства требует не равность или пропорциональность отрезков, а параллельность прямых. Формулируется обратная теорема Фалеса так:

Если две или более прямых (a, b, c) отсекают от двух других прямых (d, f) равные или пропорциональные отрезки, то они параллельные.

Утверждение справедливо, независимо от того, параллельные d, f или пересекаются.

Видео:Геометрия 8. Урок 8 - Теорема Фалеса - теорияСкачать

Геометрия 8. Урок 8 - Теорема Фалеса - теория

Доказательство теоремы Фалеса

Математика, тем более, геометрия, наука точная. Каждое утверждение, кроме аксиом, требует доказательства. В геометрии под термином «теорема» подразумевается утверждение, которое доказано на базе ранее полученных знаний в виде аксиом и других теорем.

Теорема Фалеса с доказательством приведена в большинстве учебников. В отличие от теоремы Пифагора, доказательств у нее меньше, но все они четкие, понятные и аргументированные. Покажем одно из них.

Не будем повторять формулировок, продемонстрируем только ход мыслей и выполним необходимые построения:

Теорема о параллельных прямых отсекающих равные отрезки

Выберем точку В2 и проведем прямую, параллельную стороне угла ОС. При этом отмечаем, что А1А3 || EF. Рассматривая четырехугольник

А1FЕА3 замечаем, что А1F и ЕА3 параллельны по определению, а А1А3 и FВ3 параллельны по построению. Отсюда вытекает, что А1 FЕА 3 — параллелограм и А1А3 = EF.

Аналогичным образом доказываем равенство других сторон и получаем, что по равенству вертикальных и внутренних углов ∠B1B2F=∠B3B2E и ∠B2FB1=∠B2EB3 треугольники B2B1F и B2B3E равны, откуда вытекает, что B1B2=B2B3.

Именно это и требовалось доказать.

Теорема о параллельных прямых отсекающих равные отрезки

Видео:Теорема о пропорциональных отрезкахСкачать

Теорема о пропорциональных отрезках

Кто впервые доказал теорему о пропорциональных отрезках

По легенде, впервые на практике использовал теорему греческий философ Фалес Милетский. Он применил ее для измерения высоты пирамиды Хеопса, пользуясь падающей на песок тенью. Для сравнения длины отрезков использовалась воткнутая рядом палка.

Теорема о параллельных прямых отсекающих равные отрезки

Но доказательство теоремы, самое давнее из известных, зафиксированных в письменных источниках, дано в книге «Элементы» другого философа и математика — Эвклида. Тем не менее, утверждение получило имя Фалеса, под которым известно до сих пор.

🔍 Видео

Теорема фалеса. Теорема о пропорциональных отрезках - геометрия 8 классСкачать

Теорема фалеса. Теорема о пропорциональных отрезках - геометрия 8 класс

Теорема ФалесаСкачать

Теорема Фалеса

№385. Докажите теорему Фалеса: если на одной из двух прямых отложить последовательноСкачать

№385. Докажите теорему Фалеса: если на одной из двух прямых отложить последовательно

Теорема Фалеса.Thales theorem. Формулировка, доказательство, примеры задач.Скачать

Теорема Фалеса.Thales theorem. Формулировка, доказательство, примеры задач.

Теорема ФалесаСкачать

Теорема Фалеса

Теорема ФалесаСкачать

Теорема Фалеса

Теорема Фалеса. Практическая часть - решение задачи. 8 класс.Скачать

Теорема Фалеса. Практическая часть - решение задачи. 8 класс.

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Геометрия. 8 класс. Теорема Фалеса. Пропорциональные отрезки /06.10.2020/Скачать

Геометрия. 8 класс. Теорема Фалеса. Пропорциональные отрезки /06.10.2020/

Теорема Фалеса. Теорема о пропорциональных отрезках.Скачать

Теорема Фалеса. Теорема о пропорциональных отрезках.

8 класс, 19 урок, Пропорциональные отрезкиСкачать

8 класс, 19 урок, Пропорциональные отрезки

Теорема о пропорциональных отрезках. Теорема ФалесаСкачать

Теорема о пропорциональных отрезках. Теорема Фалеса

Теорема ФалесаСкачать

Теорема Фалеса

Пропорциональные отрезки. Медианы в треугольнике. Теорема Фалеса. Задачи для ОГЭ и ЕГЭ.Скачать

Пропорциональные отрезки. Медианы в треугольнике. Теорема Фалеса. Задачи для ОГЭ и ЕГЭ.
Поделиться или сохранить к себе: