Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .
Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,
то справедливо равенство
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству
и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Следовательно, справедливы равенства
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC .
В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:
- Точка K лежит между точками C и D (рис.5)
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
Фигура | Рисунок | Утверждение |
Ромб | В любой ромб можно вписать окружность | |
Квадрат | В любой квадрат можно вписать окружность | |
Прямоугольник | В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | |
Параллелограмм | В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | |
Дельтоид | В любой дельтоид можно вписать окружность | |
Трапеция | В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований |
Ромб |
В любой квадрат можно вписать окружность
В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Свойства вписанных и описанных четырёхугольников
Теорема 1 . Сумма противоположных углов вписанного четырёхугольника равна 180°.
Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°.
∠А, как вписанный в окружность О, измеряется 1 /2(breve).
∠С, как вписанный в ту же окружность, измеряется 1 /2(breve).
Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т.е. имеют 360°.
Отсюда ∠А + ∠С = 360° : 2 = 180°.
Аналогично доказывается, что и ∠В + ∠D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов Аи С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180°.
Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.
Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно
∠А + ∠С = 180° и ∠В + ∠D = 180°(рис. 412).
Докажем, что около такого четырёхугольника можно описать окружность.
Доказательство. Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?
Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.
Допустим, что вершина окажется внутри круга и займёт положение D’ (рис. 413). Тогда в четырёхугольнике ABCD’ будем иметь:
Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме
Из этих двух равенств следует:
но этого быть не может, так как ∠D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.
Так же доказывается, что вершина D не может занять положение D» вне круга (рис. 414).
Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.
1. Вокруг всякого прямоугольника можно описать окружность.
2. Вокруг равнобедренной трапеции можно описать окружность.
В обоих случаях сумма противоположных углов равна 180°.
Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (рис. 415), т. е. стороны его АВ, ВС, CD и DA — касательные к этой окружности.
Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки, имеем:
Сложим почленно эти равенства. Получим:
АР + ВР + DN + CN = АК + ВМ +DK + СМ,
т. е. АВ + CD = AD + ВС, что и требовалось доказать.
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Многоугольник. Свойства четырехугольников описанных около окружности.
Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.
Теорема.
В описанном выпуклом четырехугольнике суммы противоположных сторон равны.
Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.
Обратная теорема.
Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.
Требуется доказать, что в него можно вписать окружность.
Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.
📺 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
#58. Олимпиадная задача о четырехугольникеСкачать
Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
11 класс, 44 урок, Описанный четырехугольникСкачать
Окружность, описанная около четырёхугольникаСкачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Теоремы об окружностях для четырехугольниковСкачать
9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать
Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Все теоремы по геометрии с доказательствомСкачать
Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать
Описанный четырехугольникСкачать
ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать
Вписанные четырехугольники. 9 класс.Скачать