Тангенциальная составляющая вектора электрического смещения

Поле в диэлектрике. Условия на границе двух диэлектриков

Изучим поведение векторов напряженности Е и электрического смещения D электростатического поля на границе раздела двух однородных изотропных диэлектрических сред 1 (?),/),) и 2 (E2,D2). Рассмотрим окрестность произвольной точки А, лежащей на поверхности раздела этих сред. Пусть е, и с2 — диэлектрические проницаемости первой и второй сред. Будем использовать теорему о циркуляции вектора Е (12.16) и теорему Гаусса для вектора (13.14).

Проведем в точке А на границе раздела сред единичные векторы, направленные по касательной к поверхности (т) раздела и по нормали (п) к ней, направленной из первой среды во вторую.

Построим вблизи точки А замкнутый прямоугольный контур L, две стороны которого параллельны границе раздела сред и равны А/, а две другие равны АИ (рис. 13.3, а). При любом значении АИ должна выполняться теорема о циркуляции вектора Е (12.16):

Тангенциальная составляющая вектора электрического смещения

Перейдем к пределу при Ah —> 0:

Тангенциальная составляющая вектора электрического смещенияI

В этом случае значения интеграла j E dI вдоль боковых сторон (АИ) прямоугольного контура L тоже стремятся к нулю. Верхняя и нижняя стороны контура неограниченно приближаются к поверхности раздела сред. При обходе контура L по часовой стрелке с учетом выражения (13.16) получаем, что

Тангенциальная составляющая вектора электрического смещения

Рис. 13.3. К получению условий на границе двух диэлектриков: а — для тангенциальных компонент векторов Ё и D, б — для нормальных компонент векторов

Тангенциальная составляющая вектора электрического смещения

где проекции вектора Ё взяты на направление обхода контура, показанное стрелками на рис. 13.3, а. Учтем, что в проекции на вектор т выполняется EW=

EU. Таким образом, первое граничное условие для напряженности поля

Тангенциальная составляющая вектора электрического смещенияI

т.е. тангенциальная составляющая вектора Ё напряженности поля не изменяется при переходе из одной среды в другую через поверхность раздела.

Согласно формулам (13.12а) и (13.17), имеем Тангенциальная составляющая вектора электрического смещенияи получаем первое граничное условие для электрического смещения:

Тангенциальная составляющая вектора электрического смещения

т.е. тангенциальная составляющая вектора D претерпевает на границе раздела диэлектриков разрыв.

Определим вторую пару условий. Выберем вокруг точки А небольшой участок поверхности раздела сред площадью AS. Построим цилиндрическую замкнутую поверхность S, охватывающую этот участок границы раздела сред 1 и 2. Пусть образующие цилиндра длиной Аh параллельны вектору п нормали к поверхности раздела, а основания цилиндра перпендикулярны п (рис. 13.3, б).

В теореме Гаусса (13.14) для вектора D

Тангенциальная составляющая вектора электрического смещения

где q — суммарный сторонний заряд, находящийся внутри замкнутой поверхности S, т.е. в объеме цилиндра. Перейдем к пределу при А/г —> 0 : Тангенциальная составляющая вектора электрического смещения

В общем случае при наличии поверхностных сторонних зарядов на границе раздела lim q = oAS, где о — поверхностная плотность сто-

роннего заряда на границе раздела. Тогда должно выполняться равенство

Тангенциальная составляющая вектора электрического смещения

Получаем граничное условие для вектора D в виде

Тангенциальная составляющая вектора электрического смещения

Если на поверхности раздела сред нет поверхностных сторонних зарядов, то Пт

Тангенциальная составляющая вектора электрического смещения

Рис. 13.4. Преломление линий напряженности на границе двух диэлектриков (е2 > е,)

В частности, если первая среда — вакуум, то ?| = 1 и Е2п — Е1п2. Это условие важно для практического применения в решении задач.

Преломление линий векторов Е и D. Полученные выше условия для составляющих векторов Е и D на границе раздела двух диэлектриков означают, что линии данных векторов на этой границе преломляются (рис. 13.4). Найдем соотношение между углами а, и а2, образуемыми линиями напряженности с перпендикуляром к поверхности раздела сред в точке А. Если сторонних зарядов на границе раздела нет, то по формулам (13.17) и (13.21) получаем

Тангенциальная составляющая вектора электрического смещения

Из рис. 13.4 следует, что углы а< и а2 удовлетворяют условиям

Тангенциальная составляющая вектора электрического смещения

Тогда закон преломления линий напряженности электростатического поля

на поверхности раздела двух диэлектрических сред при условии отсутствия на этой поверхности сторонних зарядов в соответствии с уравнением (13.21) запишется так: Тангенциальная составляющая вектора электрического смещения

Условие на границе проводник — диэлектрик. Если на рис. 13.3, б, среда I — проводник, а среда 2 — диэлектрик, то Dln — Dn, a Dln 0, так как внутри проводника Е — 0. Из формулы (13.19) следует, что

Тангенциальная составляющая вектора электрического смещения

где И — внешняя по отношению к проводнику нормаль.

Связанный заряд у поверхности проводника. Можно доказать, что если к заряженному участку поверхности проводника прилегает однородный диэлектрик (объемная плотность связанных зарядов р’ = 0), то на границе диэлектрика с проводником будут связанные заряды с поверхностной плотностью о’:

Тангенциальная составляющая вектора электрического смещения

где о — поверхностная плотность стороннего заряда на проводнике. При этом знаки связанного и стороннего зарядов будут противоположны.

Сегнетоэлектрики. Сегнетоэлектриками называются кристаллические диэлектрики, обладающие в определенном диапазоне температур спонтанной поляризацией, которая существенно изменяется под влиянием внешних воздействий. Они используются в конденсаторах большой емкости при малых размерах. Примеры: сегнетова соль NaKC4H40620, титанат бария ВаТЮ3.

Домены — это области сегнетоэлектриков с различными направлениями поляризации. Доменная структура отражает особенности развития фазового перехода в реальном сегнетоэлектрике. Температура, выше которой исчезают сегнетоэлектрические свойства и вещество ведет себя как изотропный диэлектрик, называют тонкой Кюри Тс . В некотором температурном интервале у сегнетоэлектриков ?

10 000 . Например, у сегнето- вой соли Тс 258 —296 К, спонтанная поляризация ps 2,6 нКл/м 2 , ?-200; у титаната бария ГС=391К, спонтанная поляризация ps = 158 нКл/м 2 , ?-3000.

Тангенциальная составляющая вектора электрического смещения

Рис. 13.5. Диэлектрический гистерезис в сегнетоэлект-

Для сегнетоэлектриков связь между вектором напряженности внешнего электрического поля Е и вектором поляризации Р нелинейная и наблюдается явление диэлектрического гистерезиса — сохранения остаточной поляризованности Р0СТ при снятии внешнего поля (рис. 13.5). Поляризация образца исчезает полностью лишь под действием электрического поля противоположного направления, напряженность которого Е =

ЕС. Величина Ес называется коэрцитивной силой.

Пьезоэлектрики — это кристаллические диэлектрики, в которых при сжатии или растяжении возникает электрическая поляризация — прямой пьезоэффект. Обратный пьезоэффект — появление механической деформации под действием электрического поля.

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Условия на границе раздела двух диэлектриков.

На границе раздела двух диэлектриков с различными диэлектрическими проницаемостями выполняются два следующих условия:

1) равны тангенциальные составляющие напряженности поля:

Тангенциальная составляющая вектора электрического смещения

2) равны нормальные составляющие электрической индукции:

Тангенциальная составляющая вектора электрического смещения

Индекс 1 относится к первому диэлектрику, индекс 2 — ко второму.

Первое условие вытекает из того, что в потенциальном поле fyEdl = 0 по любому замкнутому контуру; второе представляет следствие теоремы Гаусса.

Докажем справедливость первого условия. С этой целью выделим плоский замкнутый контур mnpqm (рис. 19.11) и составим вдоль него циркуляцию вектора напряженности электрического поля. Верхняя сторона контура расположена в диэлектрике с диэлектрической проницаемостью е2, нижняя — в диэлектрике с е,. Длину стороны тп, равную длине стороны pq, обозначим dl. Контур возьмем так, что размеры пр и qm будут бесконечно малы по сравнению с dl. Поэтому составляющими интеграла dl вдоль вертикальных сторон в силу их малости пренебрежем. Составляющая §Ё dl на пути тп равна Ё2 dl2 = E2l dl, по пути pq равна Ё dlx = и dl. Знак минус появился потому, что элемент длины на пути pq и касательная составляющая вектора Ёх направлены в противоположные стороны (cosl80° = -1). Таким образом, §Ё dl = E2ldl-Eu dl = 0 или Еи

Тангенциальная составляющая вектора электрического смещения

Тангенциальная составляющая вектора электрического смещения

Убедимся в справедливости второго условия. С этой целью на границе раздела двух сред выделим очень малых размеров параллелепипед (рис. 19.12). Внутри выделенного объема есть связанные заряды и нет свободных (случай наличия свободных зарядов на границе раздела рассмотрим отдельно), поэтому ?/3 dS = 0.

Поток вектора D:

Тангенциальная составляющая вектора электрического смещения

т. e. при наличии на границе раздела двух сред свободных зарядов нормальная составляющая вектора D скачком изменяется на значение плотности свободных зарядов на границе раздела.

Из § 19.3 известно, что потенциалу придается смысл работы при переносе единичного заряда. При переходе через границу, отделяющую один диэлектрик от другого, например, при переходе от точки п к точке р на рис. 19.11, нормальная составляющая напряженности является величиной конечной, а длина пути стремится к нулю. Произведение их равно нулю.

Поэтому при переходе через границу раздела двух диэлектриков потенциал не претерпевает скачков.

Видео:44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать

44. Электрическое поле в диэлектрике. Вектор поляризованности

Вектор электрической индукции

Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :

D → = ε 0 E → + P → , где ε 0 — электрическая постоянная, E → — вектор напряженности, P → — вектор поляризации.

Вектор электрического смещения в СНС определяется как:

Видео:45. Электрическое смещениеСкачать

45. Электрическое смещение

Вектор индукции

Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:

По уравнению d i v D → = ρ видно, что для D → единственным источником будут являться свободные заряды, на которых данный вектор начинается и заканчивается. В точках с отсутствующими свободными зарядами вектор электрической индукции является непрерывным. Изменения напряженности поля, вызванные наличием связанных зарядов, учитываются в самом векторе D → .

Видео:Лекция 4-2. Условия на границе раздела двух диэлектриковСкачать

Лекция 4-2. Условия на границе раздела двух диэлектриков

Связь вектора напряженности и вектора электрического смещения

При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:

D → = ε 0 E → + ε 0 χ E → = ε 0 + ε 0 χ E → = ε ε 0 E → .

Где ε – диэлектическая проницаемость среды.

Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:

Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:

D 2 n — D 1 n = σ

n 2 → D 2 → — D 1 → = σ ,

где σ – поверхностная плотность распределения зарядов на границе диэлектриков, n 2 → — нормаль, проведенная в сторону второй среды.

Формула тангенциальной составляющей:

D 2 τ = ε 2 ε 1 D 1 τ .

Единица вектора электрической индукции измеряется в системе С И как К л м 2 .

Поле вектора D → изображается при помощи линий электрического смещения.

Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.

Имеются пластины плоского конденсатора с зарядом q . Произойдет ли изменение вектора электрической индукции при заполненном воздухом пространстве между пластинами и диэлектрика с диэлектрической проницаемостью ε ≠ ε υ o z d .

Поле конденсатора в первом случае характеризовалось вектором смещения ε v o z d = 1 , то есть D 1 → = ε v o z d ε 0 E 1 → = ε 0 E 1 → .

Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:

Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:

Запись результирующего поля с диэлектриком примет вид:

E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ .

Формула плотности связанных зарядов:

Произведем подстановку σ s υ = χ ε 0 E в E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ , тогда:

Далее выражаем из ( 1 . 6 ) напряженность поля Е . Формула принимает вид:

E = E 1 1 + χ = E 1 ε .

Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:

D = ε ε 0 E 1 ε = ε 0 E 1 = D 1 .

Ответ: вектор электрической индукции не изменяется.

Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.

Тангенциальная составляющая вектора электрического смещения

Рисунок 1 . Замкнутая поверхность

Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :

Φ D = ∫ S D → · d S → .

Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.

Изображена замкнутая поверхность S , проходящая с захватом части пластины изотропного диэлектрика на рисунке 2 . Поток вектора электрической индукции через нее равняется нулю, а поток вектора напряженности > 0 . Какой вывод можно сделать из данной задачи?

Тангенциальная составляющая вектора электрического смещения

Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика

Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:

Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:

Φ D = ∫ S D → · d S → = Q = 0 .

Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.

Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.

🎦 Видео

Билет №31 "Ток смещения"Скачать

Билет №31 "Ток смещения"

Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

Урок 383. Вихревое электрическое поле. Ток смещения

Лекция 237. Вектор электрической индукцииСкачать

Лекция 237.  Вектор электрической индукции

Физика - Магнитное полеСкачать

Физика - Магнитное поле

Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Урок 228. Диэлектрики в электрическом поле. Диэлектрическая проницаемостьСкачать

Урок 228. Диэлектрики в электрическом поле. Диэлектрическая проницаемость

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

1.1 Векторы напряженности и индукции электрического и магнитного полейСкачать

1.1 Векторы напряженности и индукции электрического и магнитного полей

46. Граничные условия для электрического поляСкачать

46. Граничные условия для электрического поля

2.5 Граничные условия для векторов поля на поверхности раздела средСкачать

2.5 Граничные условия для векторов поля на поверхности раздела сред

Билет №06-08 "Диэлектрики"Скачать

Билет №06-08 "Диэлектрики"

Лекция №4 "Диэлектрики, вектор электрической индукции"Скачать

Лекция №4 "Диэлектрики, вектор электрической индукции"

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Урок 223. Теорема ГауссаСкачать

Урок 223. Теорема Гаусса

Урок 225. Задачи на поток вектора напряженности электрического поляСкачать

Урок 225. Задачи на поток вектора напряженности электрического поля

5.2 Формулы Френеля для коэффициентов отражения и преломленияСкачать

5.2 Формулы Френеля для коэффициентов отражения и преломления
Поделиться или сохранить к себе: