Тангенс одного на окружности

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Тангенс одного на окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Тангенс одного на окружностии Тангенс одного на окружности

Тангенс одного на окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Тангенс одного на окружности

Находим на круге Тангенс одного на окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Тангенс одного на окружности

Ответ: Тангенс одного на окружности

Пример 2.

Вычислить Тангенс одного на окружности

Находим на круге Тангенс одного на окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Тангенс одного на окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Тангенс одного на окружности

Тангенс одного на окружности

Находим на круге точку Тангенс одного на окружности(это та же точка, что и Тангенс одного на окружности) и от нее по часовой стрелке (знак минус!) откладываем Тангенс одного на окружности(Тангенс одного на окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Тангенс одного на окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Тангенс одного на окружности.

Так значит, Тангенс одного на окружности

Ответ: Тангенс одного на окружности

Пример 4.

Вычислить Тангенс одного на окружности

Тангенс одного на окружности

Поэтому от точки Тангенс одного на окружности(именно там будет Тангенс одного на окружности) откладываем против часовой стрелки Тангенс одного на окружности.

Выходим на ось котангенсов, получаем, что Тангенс одного на окружности

Ответ: Тангенс одного на окружности

Пример 5.

Вычислить Тангенс одного на окружности

Находим на круге Тангенс одного на окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Тангенс одного на окружности

Ответ: Тангенс одного на окружности

Тангенс одного на окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Содержание
  1. Тангенс
  2. Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.
  3. Аргумент и значение тангенса
  4. Тангенс острого угла
  5. Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.
  6. Вычисление тангенса числа или любого угла
  7. Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
  8. Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.
  9. Чтобы определить тангенс с помощью числовой окружности, нужно: 1) Отметить соответствующую аргументу тангенса точку на числовой окружности. 2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов. 3) Найти координату пересечения этой прямой и оси тангенсов.
  10. В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
  11. Знаки по четвертям
  12. Связь с другими тригонометрическими функциями:
  13. Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов
  14. 💡 Видео

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Тангенс

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Аргумент и значение тангенса

Тангенс одного на окружности

Аргументом тангенса может быть:
— как число или выражение с Пи: (1,3), (frac), (π), (-frac) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

Тангенс одного на окружности

2) Достроим на этом угле любой прямоугольный треугольник.

Тангенс одного на окружности

3) Измерив, нужные стороны, можем вычислить тангенс.

Тангенс одного на окружности

Видео:10 класс, 13 урок, Синус и косинус Тангенс и котангенсСкачать

10 класс, 13 урок, Синус и косинус  Тангенс и котангенс

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Тангенс одного на окружности

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Тангенс одного на окружности

Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Тангенс одного на окружности

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Тангенс одного на окружности

2) Проводим через данную точку и начало координат прямую.

Тангенс одного на окружности

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt) (приблизительно (-1,73)).

Тангенс одного на окружности

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

Тангенс одного на окружности

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac) ,(-) (frac) , (frac) , (frac) , (frac) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac) ,(-) (frac) ,(-) (frac) , (frac) , (frac) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Тангенс одного на окружности

Видео:Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac)
Другие наиболее часто применяемые формулы смотри здесь .

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов

ТАНГЕНС (Tg α) острого угла в прямоугольном треугольнике равняется отношение противолежащего катета к прилежащему катету.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
tg α (Тангенс)01/31300

Полная таблица тангенсов для углов от 0° до 360°

Угол в градусахtg (Тангенс)
0
0.0175
0.0349
0.0524
0.0699
0.0875
0.1051
0.1228
0.1405
0.1584
10°0.1763
11°0.1944
12°0.2126
13°0.2309
14°0.2493
15°0.2679
16°0.2867
17°0.3057
18°0.3249
19°0.3443
20°0.364
21°0.3839
22°0.404
23°0.4245
24°0.4452
25°0.4663
26°0.4877
27°0.5095
28°0.5317
29°0.5543
30°0.5774
31°0.6009
32°0.6249
33°0.6494
34°0.6745
35°0.7002
36°0.7265
37°0.7536
38°0.7813
39°0.8098
40°0.8391
41°0.8693
42°0.9004
43°0.9325
44°0.9657
45°1
46°1.0355
47°1.0724
48°1.1106
49°1.1504
50°1.1918
51°1.2349
52°1.2799
53°1.327
54°1.3764
55°1.4281
56°1.4826
57°1.5399
58°1.6003
59°1.6643
60°1.7321
61°1.804
62°1.8807
63°1.9626
64°2.0503
65°2.1445
66°2.246
67°2.3559
68°2.4751
69°2.6051
70°2.7475
71°2.9042
72°3.0777
73°3.2709
74°3.4874
75°3.7321
76°4.0108
77°4.3315
78°4.7046
79°5.1446
80°5.6713
81°6.3138
82°7.1154
83°8.1443
84°9.5144
85°11.4301
86°14.3007
87°19.0811
88°28.6363
89°57.29
90°

Таблица тангенсов для углов от 91° до 180°

Уголtg (Тангенс)
91°-57.29
92°-28.6363
93°-19.0811
94°-14.3007
95°-11.4301
96°-9.5144
97°-8.1443
98°-7.1154
99°-6.3138
100°-5.6713
101°-5.1446
102°-4.7046
103°-4.3315
104°-4.0108
105°-3.7321
106°-3.4874
107°-3.2709
108°-3.0777
109°-2.9042
110°-2.7475
111°-2.6051
112°-2.4751
113°-2.3559
114°-2.246
115°-2.1445
116°-2.0503
117°-1.9626
118°-1.8807
119°-1.804
120°-1.7321
121°-1.6643
122°-1.6003
123°-1.5399
124°-1.4826
125°-1.4281
126°-1.3764
127°-1.327
128°-1.2799
129°-1.2349
130°-1.1918
131°-1.1504
132°-1.1106
133°-1.0724
134°-1.0355
135°-1
136°-0.9657
137°-0.9325
138°-0.9004
139°-0.8693
140°-0.8391
141°-0.8098
142°-0.7813
143°-0.7536
144°-0.7265
145°-0.7002
146°-0.6745
147°-0.6494
148°-0.6249
149°-0.6009
150°-0.5774
151°-0.5543
152°-0.5317
153°-0.5095
154°-0.4877
155°-0.4663
156°-0.4452
157°-0.4245
158°-0.404
159°-0.3839
160°-0.364
161°-0.3443
162°-0.3249
163°-0.3057
164°-0.2867
165°-0.2679
166°-0.2493
167°-0.2309
168°-0.2126
169°-0.1944
170°-0.1763
171°-0.1584
172°-0.1405
173°-0.1228
174°-0.1051
175°-0.0875
176°-0.0699
177°-0.0524
178°-0.0349
179°-0.0175
180°0

Таблица тангенсов для углов от 181° до 270°

Уголtg (Тангенс)
181°0.0175
182°0.0349
183°0.0524
184°0.0699
185°0.0875
186°0.1051
187°0.1228
188°0.1405
189°0.1584
190°0.1763
191°0.1944
192°0.2126
193°0.2309
194°0.2493
195°0.2679
196°0.2867
197°0.3057
198°0.3249
199°0.3443
200°0.364
201°0.3839
202°0.404
203°0.4245
204°0.4452
205°0.4663
206°0.4877
207°0.5095
208°0.5317
209°0.5543
210°0.5774
211°0.6009
212°0.6249
213°0.6494
214°0.6745
215°0.7002
216°0.7265
217°0.7536
218°0.7813
219°0.8098
220°0.8391
221°0.8693
222°0.9004
223°0.9325
224°0.9657
225°1
226°1.0355
227°1.0724
228°1.1106
229°1.1504
230°1.1918
231°1.2349
232°1.2799
233°1.327
234°1.3764
235°1.4281
236°1.4826
237°1.5399
238°1.6003
239°1.6643
240°1.7321
241°1.804
242°1.8807
243°1.9626
244°2.0503
245°2.1445
246°2.246
247°2.3559
248°2.4751
249°2.6051
250°2.7475
251°2.9042
252°3.0777
253°3.2709
254°3.4874
255°3.7321
256°4.0108
257°4.3315
258°4.7046
259°5.1446
260°5.6713
261°6.3138
262°7.1154
263°8.1443
264°9.5144
265°11.4301
266°14.3007
267°19.0811
268°28.6363
269°57.29
270°

Таблица тангенсов для углов от 271° до 360°

Уголtg (Тангенс)
271°-57.29
272°-28.6363
273°-19.0811
274°-14.3007
275°-11.4301
276°-9.5144
277°-8.1443
278°-7.1154
279°-6.3138
280°-5.6713
281°-5.1446
282°-4.7046
283°-4.3315
284°-4.0108
285°-3.7321
286°-3.4874
287°-3.2709
288°-3.0777
289°-2.9042
290°-2.7475
291°-2.6051
292°-2.4751
293°-2.3559
294°-2.246
295°-2.1445
296°-2.0503
297°-1.9626
298°-1.8807
299°-1.804
300°-1.7321
301°-1.6643
302°-1.6003
303°-1.5399
304°-1.4826
305°-1.4281
306°-1.3764
307°-1.327
308°-1.2799
309°-1.2349
310°-1.1918
311°-1.1504
312°-1.1106
313°-1.0724
314°-1.0355
315°-1
316°-0.9657
317°-0.9325
318°-0.9004
319°-0.8693
320°-0.8391
321°-0.8098
322°-0.7813
323°-0.7536
324°-0.7265
325°-0.7002
326°-0.6745
327°-0.6494
328°-0.6249
329°-0.6009
330°-0.5774
331°-0.5543
332°-0.5317
333°-0.5095
334°-0.4877
335°-0.4663
336°-0.4452
337°-0.4245
338°-0.404
339°-0.3839
340°-0.364
341°-0.3443
342°-0.3249
343°-0.3057
344°-0.2867
345°-0.2679
346°-0.2493
347°-0.2309
348°-0.2126
349°-0.1944
350°-0.1763
351°-0.1584
352°-0.1405
353°-0.1228
354°-0.1051
355°-0.0875
356°-0.0699
357°-0.0524
358°-0.0349
359°-0.0175
360°0

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен тангенс 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.5774

💡 Видео

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Тема 2. Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же углаСкачать

Тема 2. Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Алгебра 10 класс (Урок№32 - Зависимость между синусом, косинусом и тангенсом одного и того же угла)Скачать

Алгебра 10 класс (Урок№32 - Зависимость между синусом, косинусом и тангенсом одного и того же угла)

Алгебра 10 класс Зависимость между синусом, косинусом, тангенсом одного угла ЛекцияСкачать

Алгебра 10 класс Зависимость между синусом, косинусом, тангенсом одного угла Лекция

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1Скачать

9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ
Поделиться или сохранить к себе: