Таблица тангенсов на единичной окружности

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Таблица тангенсов на единичной окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Таблица тангенсов на единичной окружностии Таблица тангенсов на единичной окружности

Таблица тангенсов на единичной окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Таблица тангенсов на единичной окружности

Находим на круге Таблица тангенсов на единичной окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Таблица тангенсов на единичной окружности

Ответ: Таблица тангенсов на единичной окружности

Пример 2.

Вычислить Таблица тангенсов на единичной окружности

Находим на круге Таблица тангенсов на единичной окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Таблица тангенсов на единичной окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Таблица тангенсов на единичной окружности

Таблица тангенсов на единичной окружности

Находим на круге точку Таблица тангенсов на единичной окружности(это та же точка, что и Таблица тангенсов на единичной окружности) и от нее по часовой стрелке (знак минус!) откладываем Таблица тангенсов на единичной окружности(Таблица тангенсов на единичной окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Таблица тангенсов на единичной окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Таблица тангенсов на единичной окружности.

Так значит, Таблица тангенсов на единичной окружности

Ответ: Таблица тангенсов на единичной окружности

Пример 4.

Вычислить Таблица тангенсов на единичной окружности

Таблица тангенсов на единичной окружности

Поэтому от точки Таблица тангенсов на единичной окружности(именно там будет Таблица тангенсов на единичной окружности) откладываем против часовой стрелки Таблица тангенсов на единичной окружности.

Выходим на ось котангенсов, получаем, что Таблица тангенсов на единичной окружности

Ответ: Таблица тангенсов на единичной окружности

Пример 5.

Вычислить Таблица тангенсов на единичной окружности

Находим на круге Таблица тангенсов на единичной окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Таблица тангенсов на единичной окружности

Ответ: Таблица тангенсов на единичной окружности

Таблица тангенсов на единичной окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Таблицы значений синусов, косинусов, тангенсов, котангенсов (sin, cos, tg, ctg)

Таблицы значений синусов (sin), косинусов (cos), тангенсов (tg), котангенсов (ctg) — это мощный и полезный инструмент, помогающий решать множество задач, как теоретического, так и прикладного характера. В этой статье мы приведем таблицу основных тригонометрических функций (синусов, косинусов, тангенсов и котангенсов) для углов 0, 30, 45, 60, 90, . 360 градусов ( 0 , π 6 , π 3 , π 2 , . . . , 2 π радиан). Также будут показаны отдельные таблицы Брадиса для синусов и косинусов, тангенсов и котангенсов с пояснением, как их использовать для нахождения значений основных тригонометрических функций.

Видео:Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!

Таблица основных тригонометрических функций для углов 0, 30, 45, 60, 90, . 360 градусов

Исходя из определений синуса, косинуса, тангенса и котангенса можно найти значения этих функций для углов 0 и 90 градусов

sin 0 = 0 , cos 0 = 1 , t g 0 = 0 , котангенс нуля — не определен,

sin 90 ° = 1 , cos 90 ° = 0 , с t g 90 ° = 0 , тангенс дявяноста градусов не определен.

Значения синусов, косинусов, тангенсов и котангенсов в курсе геометрии определяются как соотношения сторон прямоугольного треугольника, углы которого равны 30, 60 и 90 градусов, и также 45, 45 и 90 градусов.

Определение тригонометрических функуций для острого угла в прямоугольном треугольнике

Синус — отношение противолежащего катета к гипотенузе.

Косинус — отношение прилежащего катета к гипотенузе.

Тангенс — отношение противолежащего катета к прилежащему.

Котангенс — отношение прилежащего катета к противолежащему.

В соответствии с определениями находятся значения функций:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1 , sin 60 ° = 3 2 , cos 45 ° = 1 2 , t g 45 ° = 3 , c t g 45 ° = 3 3 .

Сведем эти значения в таблицу и назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Таблица основных значений синусов, косинусов, тангенсов и котангенсов

α °030456090sin α01 22 23 21cos α13 22 21 20t g α03 313н е о п р е д е л е нc t g αн е о п р е д е л е н313 30α , р а д и а н0π 6π 4π 3π 2

Одно из важных свойств тригонометрических функций — периодичность. На основе этого свойства данную таблицу можно расширить,используя формулы приведения. Ниже представим расширенную таблицу значений основных тригонометрических функций для углов 0, 30, 60, . ,120, 135, 150, 180, . , 360 градусов ( 0 , π 6 , π 3 , π 2 , . . . , 2 π радиан).

Таблица синусов, косинусов, тангенсов и котангенсов

α °030456090120135150180210225240270300315330360sin α01 22 23 213 22 21 20— 1 2— 2 2— 3 2— 1— 3 2— 2 2— 1 20cos α13 22 21 20— 1 2— 2 2— 3 2— 1— 3 2— 2 2— 1 201 22 23 21t g α03 313—— 1— 3 3003 313—— 3— 10c t g α—313 30— 3 3— 1— 3—313 30— 3 3— 1— 3—α , р а д и а н0π 6π 4π 3π 22 π 33 π 45 π 6π7 π 65 π 44 π 33 π 25 π 37 π 411 π 62 π

Периодичность синуса, косинуса, тангенса и котангенса позволяет расширять эту таблицу до сколь угодно больших значений углов. Значения, собранные в таблице, используются при решении задач чаще всего, поэтому их рекомендуется выучить наизусть.

Видео:Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений ДолжкевичСкачать

Спидран: Как запомнить таблицу синусов и косинусов за 1 минуту? Евгений Должкевич

Как пользоваться таблицей основных значений тригонометрических функций

Принцип пользования таблицей значений синусов, косинусов, тангенсов и котангенсов понятен на интуитивном уровне. Пересечение строки и столбца дает значение функции для конкретного угла.

Пример. Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов

Нужно узнать, чему равен sin 7 π 6

Находим в таблице столбец, значение последней ячейки которого равно 7 π 6 радиан — то же самое, что 210 градусов. Затем выбираем сроку таблицы, в которой представлены значения синусов. На пересечении строки и столбца находим искомое значение:

sin 7 π 6 = — 1 2

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Таблицы Брадиса

Таблица Брадиса позволяет вычислить значение синуса, косинуса, тангенса или котангенса с точностью до 4-х знаков после запятой без использования вычислительной техники. Это своего рода замена инженерному калькулятору.

Владимир Модестович Брадис (1890 — 1975) — советский математик-педагог, с 1954 года член-корреспондент АПН СССР. Таблицы четырёхзначных логарифмов и натуральных тригонометрических величин, разработанные Брадисом, впервые вышли в 1921 году.

Сначала приведем таблицу Брадиса для синусов и косинусов. Она позволяет достаточно точно вычислять приближенные значения этих функций для углов, содержащих целое количество градусов и минут. В крайнем левом столбце таблицы представлены градусы, а в верхней строке — минуты. Отметим, что все значения углов таблицы Брадиса кратны шести минутам.

Таблица Брадиса для синусов и косинусов

sin0′6′12′18′24′30′36′42′48′54′60′cos1′2′3′
0.000090°
0.0000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036603840401041904360454047104880506052387°369
0523054105580576059306100628064506630680069886°369
06980715073207500767078508020819083708540.087285°369
0.0872088909060924094109580976099310111028104584°369
1045106310801097111511321149116711841201121983°369
1219123612531271128813051323134013571374139282°369
1392140914261444146114781495151315301547156481°369
15641582159916161633165016681685170217190.173680°369
10°0.1736175417711788180518221840185718741891190879°369
11°1908192519421959197719942011202820452062207978°369
12°2079209621132130214721642181219822152233225077°369
13°2250226722842300231723342351236823852402241976°368
14°24192436245324702487250425212538255425710.258875°368
15°0.2588260526222639265626722689270627232740275674°368
16°2756277327902807282328402857287428902907292473°368
17°2924294029572974299030073024304030573074309072°368
18°3090310731233140315631733190320632233239325671°368
19°32563272328933053322333833553371338734040.342070°358
20°0.3420343734533469348635023518353535513567358469°358
21°3584360036163633364936653681369737143730374668°358
22°3746376237783795381138273843385938753891390767°358
23°3907392339393955397139874003401940354051406766°358
24°40674083409941154131414741634179419542100.422665°358
25°0.4226424242584274428943054321433743524368438464°358
26°4384439944154431444644624478449345094524454063°358
27°4540455545714586460246174633464846644679469562°358
28°4695471047264741475647724787480248184833484861°358
29°48484863487948944909492449394955497049850.500060°358
30°0.5000501550305045506050755090510551205135515059°358
31°5150516551805195521052255240525552705284529958°257
32°5299531453295344535853735388540254175432544657°257
33°5446546154765490550555195534554855635577559256°257
34°55925606562156355650566456785693570757210.573655°257
35°0.57365750576457795793580758215835585058640.587854°257
36°5878589259065920593459485962597659906004601853°257
37°6018603260466060607460886101611561296143615752°257
38°6157617061846198621162256239625262666280629351°257
39°62936307632063346347636163746388640164140.642850°247
40°0.6428644164556468648164946508652165346547656149°247
41°6561657465876600661366266639665266656678669148°247
42°6691670467176730674367566769678267946807682047°246
43°6820683368456858687168846896890969216934694746°246
44°69476959697269846997700970227034704670590.707145°246
45°0.7071708370967108712071337145715771697181719344°246
46°7193720672187230724272547266727872907302731443°246
47°7314732573377349736173737385739674087420743142°246
48°7431744374557466747874907501751375247536754741°246
49°75477559757075817593760476157627763876490.766040°246
50°0.7660767276837694770577167727773877497760777139°246
51°7771778277937804781578267837784878597869788038°245
52°7880789179027912792379347944795579657976798637°245
53°7986799780078018802880398049805980708080809036°235
54°80908100811181218131814181518161817181810.819235°235
55°0.8192820282118221823182418251826182718281829034°235
56°8290830083108320832983398348835883688377838733°235
57°8387839684068415842584348443845384628471848032°235
58°8480849084998508851785268536854585548563857231°235
59°85728581859085998607861686258634864386520.866030°134
60°0.8660866986788686869587048712872187298738874629°134
61°8746875587638771878087888796880588138821882928°134
62°8829883888468854886288708878888688948902891027°134
63°8910891889268934894289498957896589738980898826°134
64°89888996900390119018902690339041904890560.906325°134
65°0.9063907090789085909291009107911491219128913524°124
66°9135914391509157916491719178918491919198920523°123
67°9205921292199225923292399245925292599256927222°123
68°9272927892859291929893049311931793239330933621°123
69°93369342934893549361936793739379938393910.939720°123
70°93979403940994159421942694329438944494490.945519°123
71°9455946194669472947894839489949495009505951118°123
72°9511951695219527953295379542954895539558956317°123
73°9563956895739578958395889593959896039608961316°122
74°96139617962296279632963696419646965096550.965915°122
75°9659966496689673967796819686969096949699970314°112
76°9703970797119715972097249728973297369740974413°112
77°9744974897519755975997639767977097749778978112°112
78°9781978597899792979697999803980698109813981611°112
79°98169820982398269829983398369839984298450.984810°112
80°0.98489851985498579860986398669869987198749877011
81°98779880988298859888989098939895989899009903011
82°99039905990799109912991499179919992199239925011
83°99259928993099329934993699389940994299439945011
84°99459947994999519952995499569957995999609962011
85°99629963996599669968996999719972997399749976001
86°99769977997899799980998199829983998499859986000
87°99869987998899899990999099919992999399939994000
88°99949995999599969996999799979997999899980.9998000
89°999899999999999999991.00001.00001.00001.00001.00001.0000000
90°1.0000
sin60′54′48′42′36′30′24′18′12′6′0′cos1′2′3′

Для нахождения значений синусов и косинусов углов, не представленных в таблице, необходимо использовать поправки.

Теперь приведем таблицу Брадиса для тангенсов и котангенсов. Она содержит значения тангенсов углов от 0 до 76 градусов, и котангенсов углов от 14 до 90 градусов.

Таблица Брадиса для тангенса и котангенса

tg0′6′12′18′24′30′36′42′48′54′60′ctg1′2′3′
090°
0,000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036703840402041904370454047204890507052487°369
0524054205590577059406120629064706640682069986°369
06990717073407520769078708050822084008570,087585°369
0,0875089209100928094509630981099810161033105184°369
1051106910861104112211391157117511921210122883°369
1228124612631281129913171334135213701388140582°369
1405142314411459147714951512153015481566158481°369
15841602162016381655167316911709172717450,176380°369
10°0,1763178117991817183518531871189019081926194479°369
11°1944196219801998201620352053207120892107212678°369
12°2126214421622180219922172235225422722290230977°369
13°2309232723452364238224012419243824562475249376°369
14°24932512253025492568258626052623264226610,267975°369
15°0,2679269827172736275427732792281128302849286774°369
16°2867288629052924294329622981300030193038305773°369
17°3057307630963115313431533172319132113230324972°3610
18°3249326932883307332733463365338534043424344371°3610
19°34433463348235023522354135613581360036200,364070°3710
20°0,3640365936793699371937393759377937993819383969°3710
21°3839385938793899391939393959397940004020404068°3710
22°4040406140814101412241424163418342044224424567°3710
23°4245426542864307432743484369439044114431445266°3710
24°44524473449445154536455745784599462146420,466365°4711
25°0,4663468447064727474847704791481348344856487764°4711
26°4877489949214942496449865008502950515073509563°4711
27°5095511751395161518452065228525052725295531762°4711
28°5317534053625384540754305452547554985520554361°4811
29°55435566558956125635565856815704572757500,577460°4812
30°0,5774579758205844586758905914593859615985600959°4812
31°6009603260566080610461286152617662006224624958°4812
32°6249627362976322634663716395642064456469649457°4812
33°6494651965446569659466196644666966946720674556°4813
34°67456771679668226847687368996924695069760,700255°4913
35°0,7002702870547080710771337159718672127239726554°4813
36°7265729273197346737374007427745474817508753653°5914°
37°7536756375907618764676737701772977577785781352°5914
38°7813784178697898792679547983801280408069809851°5914
39°80988127815681858214824382738302833283610,839150°51015
40°0,83918421845184818511854185718601863286620,869349°51015
41°8693872487548785881688478878891089418972900448°51016
42°9004903690679099913191639195922892609293932547°61116
43°93259358939194249457949095239556959096230,965746°61117
44°96579691972597599793982798619896993099651,000045°61117
45°1,0000003500700105014101760212024702830319035544°61218
46°0355039204280464050105380575061206490686072443°61218
47°0724076107990837087509130951099010281067110642°61319
48°1106114511841224126313031343138314231463150441°71320
49°15041544158516261667170817501792183318751,191840°71421
50°1,1918196020022045208821312174221822612305234939°71422
51°2349239324372482252725722617266227082753279938°81523
52°2799284628922938298530323079312731753222327037°81624
53°3270331933673416346535143564361336633713376436°81625
54°37643814386539163968401940714124417642291,428135°91726
55°1,4281433543884442449645504605465947154770482634°91827
56°4826488249384994505151085166522452825340539933°101929
57°5399545855175577563756975757581858805941600332°102030
58°6003606661286191625563196383644765126577664331°112132
59°66436709677568426909697770457113718272511,732130°112334
60°1,7321,7391,7461,7531,7601,7671,7751,7821,7891,7971,80429°124
61°1,8041,8111,8191,8271,8341,8421,8491,8571,8651,8731,88128°134
62°1,8811,8891,8971,9051,9131,9211,9291,9371,9461,9541,96327°134
63°1,9631,9711,9801,9881,9972,0062,0142,0232,0322,0412,0526°134
64°2,0502,0592,0692,0782,0872,0972,1062,1162,1252,1352,14525°235
65°2,1452,1542,1642,1742,1842,1942,2042,2152,2252,2362,24624°235
66°2,2462,2572,2672,2782,2892,32,3112,3222,3332,3442,35623°245
67°2,3562,3672,3792,3912,4022,4142,4262,4382,4502,4632,47522°246
68°2,4752,4882,52,5132,5262,5392,5522,5652,5782,5922,60521°246
69°2,6052,6192,6332,6462,662,6752,6892,7032,7182,7332,74720°257
70°2,7472,7622,7782,7932,8082,8242,8402,8562,8722,8882,90419°358
71°2,9042,9212,9372,9542,9712,9893,0063,0243,0423,063,07818°369
72°3,0783,0963,1153,1333,1523,1723,1913,2113,2303,2513,27117°3610
73°3,2713,2913,3123,3333,3543,3763710
3,3983,423,4423,4653,48716°4711
74°3,4873,5113,5343,5583,5823,6064812
3,6303,6553,6813,7063,73215°4813
75°3,7323,7583,7853,8123,8393,8674913
3,8953,9233,9523,9814,01114°51014
tg60′54′48′42′36′30′24′18′12′6′0′ctg1′2′3′

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Как пользоваться таблицами Брадиса

Рассмотрим таблицу Брадиса для синусов и косинусов. Все, что относится к синусам находится вверху и слева. Если нам нужны косинусы — смотрим на правую сторону внизу таблицы.

Для нахождения значений синуса угла нужно найти пересечение строки, содержащей в крайней левой ячейке необходимое количество градусов, и столбца, содержащего в верхней ячейке необходимое число минут.

Если точного значения угла нет в таблице Брадиса, прибегаем к помощи поправок. Поправки на одну, две и три минуты даны в крайних правых столбцах таблицы. Для нахождения значения синуса угла, которого нет в таблице, находим самое близкое к нему значение. После этого прибавляем или отнимаем поправку, соответствующую разнице между углами.

В случае, если мы ищем синус угла, который больше 90 градусов, сначала нужно воспользоваться формулами приведения, а уже потом — таблицей Брадиса.

Пример. Как пользоваться таблицей Брадиса

Пусть нужно найти синус угла 17 ° 44 ‘ . По таблице находим, чему равен синус 17 ° 42 ‘ и прибавляем к его значению поправку на две минуты:

17 ° 44 ‘ — 17 ° 42 ‘ = 2 ‘ ( н е о б х о д и м а я п о п р а в к а ) sin 17 ° 44 ‘ = 0 . 3040 + 0 . 0006 = 0 . 3046

Принцип работы с косинусами, тангенсами и котангенсами аналогичен. Однако, важно помнить о знаке поправок.

При вычислении значений синусов поправка имеет положительный знак, а при вычислении косинусов поправку необходимо брать с отрицательным знаком.

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Таблица синусов, косинусов, тангенсов, котангенсов

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Таблицы Брадиса для sin, cos, tg, ctg.

Таблица синусов, косинусов, тангенсов, котангенсов содержит вычисленные значения тригонометрических функций для определенного угла от 0 до 360 градусов в виде простой таблицы и в виде таблицы Брадиса. Так же приведены значения тригонометрических функций в радианах для наиболее распространённых углов, применяемых при вычислениях.

Таблицы с вычисленными значениями sin, cos, tg, ctg применяются для упрощения и ускорения математических вычислений, когда нет возможности воспользоваться калькулятором или компьютером.

  • sin
  • cos
  • tg
  • ctg
  • триг. функции
  • Брадиса sin и cos
  • Брадиса tg и ctg

Таблица синусов от 0°до 360°

sin 0° = sin 360° = 0

α°sin αα°sin αα°sin αα°sin α
α°sin αα°sin αα°sin αα°sin α

Таблица косинусов от 0° до 360°

cos 0° = cos 360° = 1

α°cos αα°cos αα°cos αα°cos α
α°cos αα°cos αα°cos αα°cos α

Таблица тангенсов от 0° до 360°

tg 0° = tg 360° = 0

α°tg αα°tg αα°tg αα°tg α
α°tg αα°tg αα°tg αα°tg α

Таблица котангенсов от 0° до 360°

α°ctg αα°ctg αα°ctg αα°ctg α
α°ctg αα°ctg αα°ctg αα°ctg α

Значения тригонометрических функций в радианах для наиболее распространённых углов.

Таблица Брадиса для синусов и косинусов

sin0′6′12′18′24′30′36′42′48′54′60′cos1′2′3′
0.000090°
0.0000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036603840401041904360454047104880506052387°369
0523054105580576059306100628064506630680069886°369
06980715073207500767078508020819083708540.087285°369
0.0872088909060924094109580976099310111028104584°369
1045106310801097111511321149116711841201121983°369
1219123612531271128813051323134013571374139282°369
1392140914261444146114781495151315301547156481°369
15641582159916161633165016681685170217190.173680°369
10°0.1736175417711788180518221840185718741891190879°369
11°1908192519421959197719942011202820452062207978°369
12°2079209621132130214721642181219822152233225077°369
13°2250226722842300231723342351236823852402241976°368
14°24192436245324702487250425212538255425710.258875°368
15°0.2588260526222639265626722689270627232740275674°368
16°2756277327902807282328402857287428902907292473°368
17°2924294029572974299030073024304030573074309072°368
18°3090310731233140315631733190320632233239325671°368
19°32563272328933053322333833553371338734040.342070°358
20°0.3420343734533469348635023518353535513567358469°358
21°3584360036163633364936653681369737143730374668°358
22°3746376237783795381138273843385938753891390767°358
23°3907392339393955397139874003401940354051406766°358
24°40674083409941154131414741634179419542100.422665°358
25°0.4226424242584274428943054321433743524368438464°358
26°4384439944154431444644624478449345094524454063°358
27°4540455545714586460246174633464846644679469562°358
28°4695471047264741475647724787480248184833484861°358
29°48484863487948944909492449394955497049850.500060°358
30°0.5000501550305045506050755090510551205135515059°358
31°5150516551805195521052255240525552705284529958°257
32°5299531453295344535853735388540254175432544657°257
33°5446546154765490550555195534554855635577559256°257
34°55925606562156355650566456785693570757210.573655°257
35°0.57365750576457795793580758215835585058640.587854°257
36°5878589259065920593459485962597659906004601853°257
37°6018603260466060607460886101611561296143615752°257
38°6157617061846198621162256239625262666280629351°257
39°62936307632063346347636163746388640164140.642850°247
40°0.6428644164556468648164946508652165346547656149°247
41°6561657465876600661366266639665266656678669148°247
42°6691670467176730674367566769678267946807682047°246
43°6820683368456858687168846896890969216934694746°246
44°69476959697269846997700970227034704670590.707145°246
45°0.7071708370967108712071337145715771697181719344°246
46°7193720672187230724272547266727872907302731443°246
47°7314732573377349736173737385739674087420743142°246
48°7431744374557466747874907501751375247536754741°246
49°75477559757075817593760476157627763876490.766040°246
50°0.7660767276837694770577167727773877497760777139°246
51°7771778277937804781578267837784878597869788038°245
52°7880789179027912792379347944795579657976798637°245
53°7986799780078018802880398049805980708080809036°235
54°80908100811181218131814181518161817181810.819235°235
55°0.8192820282118221823182418251826182718281829034°235
56°8290830083108320832983398348835883688377838733°235
57°8387839684068415842584348443845384628471848032°235
58°8480849084998508851785268536854585548563857231°235
59°85728581859085998607861686258634864386520.866030°134
60°0.8660866986788686869587048712872187298738874629°134
61°8746875587638771878087888796880588138821882928°134
62°8829883888468854886288708878888688948902891027°134
63°8910891889268934894289498957896589738980898826°134
64°89888996900390119018902690339041904890560.906325°134
65°0.9063907090789085909291009107911491219128913524°124
66°9135914391509157916491719178918491919198920523°123
67°9205921292199225923292399245925292599256927222°123
68°9272927892859291929893049311931793239330933621°123
69°93369342934893549361936793739379938393910.939720°123
70°93979403940994159421942694329438944494490.945519°123
71°9455946194669472947894839489949495009505951118°123
72°9511951695219527953295379542954895539558956317°123
73°9563956895739578958395889593959896039608961316°122
74°96139617962296279632963696419646965096550.965915°122
75°9659966496689673967796819686969096949699970314°112
76°9703970797119715972097249728973297369740974413°112
77°9744974897519755975997639767977097749778978112°112
78°9781978597899792979697999803980698109813981611°112
79°98169820982398269829983398369839984298450.984810°112
80°0.98489851985498579860986398669869987198749877011
81°98779880988298859888989098939895989899009903011
82°99039905990799109912991499179919992199239925011
83°99259928993099329934993699389940994299439945011
84°99459947994999519952995499569957995999609962011
85°99629963996599669968996999719972997399749976001
86°99769977997899799980998199829983998499859986000
87°99869987998899899990999099919992999399939994000
88°99949995999599969996999799979997999899980.9998000
89°999899999999999999991.00001.00001.00001.00001.00001.0000000
90°1.0000
sin60′54′48′42′36′30′24′18′12′6′0′cos1′2′3′

Таблица Брадиса для тангенсов и котангенсов

tg0′6′12′18′24′30′36′42′48′54′60′ctg1′2′3′
090°
0,000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036703840402041904370454047204890507052487°369
0524054205590577059406120629064706640682069986°369
06990717073407520769078708050822084008570,087585°369
0,0875089209100928094509630981099810161033105184°369
1051106910861104112211391157117511921210122883°369
1228124612631281129913171334135213701388140582°369
1405142314411459147714951512153015481566158481°369
15841602162016381655167316911709172717450,176380°369
10°0,1763178117991817183518531871189019081926194479°369
11°1944196219801998201620352053207120892107212678°369
12°2126214421622180219922172235225422722290230977°369
13°2309232723452364238224012419243824562475249376°369
14°24932512253025492568258626052623264226610,267975°369
15°0,2679269827172736275427732792281128302849286774°369
16°2867288629052924294329622981300030193038305773°369
17°3057307630963115313431533172319132113230324972°3610
18°3249326932883307332733463365338534043424344371°3610
19°34433463348235023522354135613581360036200,364070°3710
20°0,3640365936793699371937393759377937993819383969°3710
21°3839385938793899391939393959397940004020404068°3710
22°4040406140814101412241424163418342044224424567°3710
23°4245426542864307432743484369439044114431445266°3710
24°44524473449445154536455745784599462146420,466365°4711
25°0,4663468447064727474847704791481348344856487764°4711
26°4877489949214942496449865008502950515073509563°4711
27°5095511751395161518452065228525052725295531762°4711
28°5317534053625384540754305452547554985520554361°4811
29°55435566558956125635565856815704572757500,577460°4812
30°0,5774579758205844586758905914593859615985600959°4812
31°6009603260566080610461286152617662006224624958°4812
32°6249627362976322634663716395642064456469649457°4812
33°6494651965446569659466196644666966946720674556°4813
34°67456771679668226847687368996924695069760,700255°4913
35°0,7002702870547080710771337159718672127239726554°4813
36°7265729273197346737374007427745474817508753653°5914°
37°7536756375907618764676737701772977577785781352°5914
38°7813784178697898792679547983801280408069809851°5914
39°80988127815681858214824382738302833283610,839150°51015
40°0,83918421845184818511854185718601863286620,869349°51015
41°8693872487548785881688478878891089418972900448°51016
42°9004903690679099913191639195922892609293932547°61116
43°93259358939194249457949095239556959096230,965746°61117
44°96579691972597599793982798619896993099651,000045°61117
45°1,0000003500700105014101760212024702830319035544°61218
46°0355039204280464050105380575061206490686072443°61218
47°0724076107990837087509130951099010281067110642°61319
48°1106114511841224126313031343138314231463150441°71320
49°15041544158516261667170817501792183318751,191840°71421
50°1,1918196020022045208821312174221822612305234939°71422
51°2349239324372482252725722617266227082753279938°81523
52°2799284628922938298530323079312731753222327037°81624
53°3270331933673416346535143564361336633713376436°81625
54°37643814386539163968401940714124417642291,428135°91726
55°1,4281433543884442449645504605465947154770482634°91827
56°4826488249384994505151085166522452825340539933°101929
57°5399545855175577563756975757581858805941600332°102030
58°6003606661286191625563196383644765126577664331°112132
59°66436709677568426909697770457113718272511,732130°112334
60°1,7321,7391,7461,7531,7601,7671,7751,7821,7891,7971,80429°124
61°1,8041,8111,8191,8271,8341,8421,8491,8571,8651,8731,88128°134
62°1,8811,8891,8971,9051,9131,9211,9291,9371,9461,9541,96327°134
63°1,9631,9711,9801,9881,9972,0062,0142,0232,0322,0412,0526°134
64°2,0502,0592,0692,0782,0872,0972,1062,1162,1252,1352,14525°235
65°2,1452,1542,1642,1742,1842,1942,2042,2152,2252,2362,24624°235
66°2,2462,2572,2672,2782,2892,32,3112,3222,3332,3442,35623°245
67°2,3562,3672,3792,3912,4022,4142,4262,4382,4502,4632,47522°246
68°2,4752,4882,52,5132,5262,5392,5522,5652,5782,5922,60521°246
69°2,6052,6192,6332,6462,662,6752,6892,7032,7182,7332,74720°257
70°2,7472,7622,7782,7932,8082,8242,8402,8562,8722,8882,90419°358
71°2,9042,9212,9372,9542,9712,9893,0063,0243,0423,063,07818°369
72°3,0783,0963,1153,1333,1523,1723,1913,2113,2303,2513,27117°3610
73°3,2713,2913,3123,3333,3543,3763710
3,3983,423,4423,4653,48716°4711
74°3,4873,5113,5343,5583,5823,6064812
3,6303,6553,6813,7063,73215°4813
75°3,7323,7583,7853,8123,8393,8674913
3,8953,9233,9523,9814,01114°51014
tg60′54′48′42′36′30′24′18′12′6′0′ctg1′2′3′

Видео:6 Линия тангенсов и линия котангенсовСкачать

6 Линия тангенсов и линия котангенсов

Тригонометрия и тригонометрические функции

Тригонометрия – раздел математики, изучающий зависимости углов и сторон треугольников, которые выражены функциями, называемыми тригонометрическими.

Функция – это правило, описывающее зависимость одной величины от другой.

Угол — это геометрическая фигура, образованная двумя линиями, не лежащими на одной прямой и выходящими или пересекающимися в одной точке.

Углы по своему виду могут быть:

  • Таблица тангенсов на единичной окружностиострыми – меньше 90 градусов
  • Таблица тангенсов на единичной окружноститупыми – больше 90 градусов
  • Таблица тангенсов на единичной окружностипрямыми – равными 90 градусов (прямые или отрезки перпендикулярны)

Треугольник – это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Отрезки называют сторонами треугольника, а точки – вершинами треугольника.

В зависимости от соотношения сторон и углов, треугольники можно разделить на группы:

Видео:Тригонометрическая таблицаСкачать

Тригонометрическая таблица

Прямоугольный треугольник

Таблица тангенсов на единичной окружности

гипотенуза – сторона прямоугольного треугольника, лежащая против прямого угла и являющаяся самой длинной стороной прямоугольного треугольника.

катет – одна из сторон прямоугольного треугольника, образующая прямой угол треугольника. Может называться противолежащим или прилежащим. Противолежащий – это катет, расположенный напротив рассматриваемого угла треугольника, прилежащий – это катет, прилежащий к рассматриваемому углу треугольника.

Чтобы вычислить какой-либо неизвестный элемент (сторону или угол) имеющегося треугольника, зная часть элементов того же треугольника, используют определенные зависимости (правила) между величинами углов и длинами сторон этого треугольника. Такие зависимости называют тригонометрическими функциями.

К базовым тригонометрическим функциям относятся:

Таблица тангенсов на единичной окружности Таблица тангенсов на единичной окружности Таблица тангенсов на единичной окружности Таблица тангенсов на единичной окружности

То есть, тригонометрические функций позволяют, зная какой-либо угол и сторону, вычислить значения других неизвестных элементов треугольника.

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Таблицы с вычисленными значениями синусов, косинусов, тангенсов, котангенсов.

Для ускорения расчетов, когда нет под рукой калькулятора, смартфона или компьютера, раньше были очень популярны таблицы с заранее вычисленными соотношениями сторон треугольников, выраженными в вычисленных значениях sin, cos, tg.

Например, зная из таблицы значения вычисленных заранее тригонометрических функций известного угла треугольника и длину одной из его сторон, можно быстро вычислить длины других сторон треугольника и величины неизвестных углов.

📸 Видео

ЕГЭ. Таблица тангенсов и котангенсовСкачать

ЕГЭ. Таблица тангенсов и котангенсов

Таблица значений тригонометрических функцийСкачать

Таблица значений тригонометрических функций

Определение тангенса и котангенса на единичной окружности. Алгебра 10 класс.Скачать

Определение тангенса и котангенса на единичной окружности. Алгебра 10 класс.

9 класс, 9 урок, Синус, косинус, тангенс, котангенсСкачать

9 класс, 9 урок, Синус, косинус, тангенс, котангенс

Знаки тригонометрических функций на единичной окружности. Тригонометрия 8-11 класс.Скачать

Знаки тригонометрических функций на единичной окружности. Тригонометрия 8-11 класс.

Синус, косинус, тангенс и котангенс на единичной окружностиСкачать

Синус, косинус, тангенс и котангенс на единичной окружности

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

§138 Таблица значений тригонометрических функций некоторых угловСкачать

§138 Таблица значений тригонометрических функций некоторых углов

Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctgСкачать

Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctg

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.
Поделиться или сохранить к себе: