Именная карта банка для детей с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Понятие окружности и круга
Тарелки, шины, колеса и монеты – все эти предметы имеют одинаковую форму, их называют круглыми. Этот термин понятен каждому, однако в геометрии каждое понятие надо строго определять. Дадим строгое определение понятию окружности:
Та точка, от которой равноудалены все точки, образующие окруж-ть, именуется центром окружности. Обратите внимание, что сам центр частью окружности НЕ считается. Расстояние, отделяющее точки окруж-ти от ее центра, именуют радиусом окружности. Получается, что для построения окруж-ти достаточно знать только ее радиус и центр. Выглядит она так:
Для построения окруж-ти используется специальный инструмент – циркуль. Он представляет собой два длинных стрежня, которые соединены шарниром. На конце одного стержня находится иголка, на конце другого – грифель карандаша или иной пишущий предмет. Сначала необходимо выставить расстояние между концами стержней – оно будет равно радиусу окруж-ти. Потом иголку ставят в центр будущей окруж-ти, после чего поворачивают циркуль так, что его пишущий конец оставил на бумаге след:
Отрезок, соединяющий две точки окруж-ти, именуется хордой. Хорда, проходящая через центр окруж-ти, именуется диаметром окружности.
Особо отметим, что сам диаметр также считается хордой.
Непосредственно из определения окруж-ти вытекает первое важное её свойство – все радиусы, построенные в одной окруж-ти, равны друг другу.
Так как центр окруж-ти делит ее диаметр на два отрезка, каждый из которых – это радиус, то диаметр окружности равен двум ее радиусам:
Традиционно диаметр обозначается буквой D, а радиус – буквой R. Получается, что справедлива формула:
Очевидно, что диаметр длиннее, чем любая другая хорда окружности, не являющаяся диаметром. Докажем это. Пусть хорда AВ не проходит через О, центр окруж-ти (он почти всегда обозначается именно этой буквой). Тогда можно построить ∆AВО:
Мы знаем про неравенство треугольника, согласно которому любая сторона треугольника меньше суммы двух других. В данном случае можно записать, что