Свойство отрезков касательных к окружности 8 класс

Касательная к окружности

Свойство отрезков касательных к окружности 8 класс

О чем эта статья:

Содержание
  1. Касательная к окружности, секущая и хорда — в чем разница
  2. Свойства касательной к окружности
  3. Задача
  4. Задача 1
  5. Задача 2
  6. Задача 1
  7. Задача 2
  8. Задача 1
  9. Задача 2
  10. Касательная к окружности
  11. Презентация по геометрии на тему: «Свойство и признак Касательной к окружности» ( 8 класс)
  12. Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
  13. Описание презентации по отдельным слайдам:
  14. Дистанционное обучение как современный формат преподавания
  15. Математика: теория и методика преподавания в образовательной организации
  16. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  17. Дистанционные курсы для педагогов
  18. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  19. Материал подходит для УМК
  20. Другие материалы
  21. Вам будут интересны эти курсы:
  22. Оставьте свой комментарий
  23. Автор материала
  24. Дистанционные курсы для педагогов
  25. Подарочные сертификаты
  26. 🔥 Видео

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Свойство отрезков касательных к окружности 8 класс

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Свойство отрезков касательных к окружности 8 класс

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Свойство отрезков касательных к окружности 8 класс

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Свойство отрезков касательных к окружности 8 класс

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Свойство отрезков касательных к окружности 8 класс

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Свойство отрезков касательных к окружности 8 класс

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Свойство отрезков касательных к окружности 8 класс

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Свойство отрезков касательных к окружности 8 класс

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Свойство отрезков касательных к окружности 8 класс

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Свойство отрезков касательных к окружности 8 класс

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Свойство отрезков касательных к окружности 8 класс

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Свойство отрезков касательных к окружности 8 класс

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Касательная к окружности

Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.

Свойство отрезков касательных к окружности 8 класс

. Угол равен , где — центр окружности. Его сторона касается окружности. Найдите величину меньшей дуги окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Свойство отрезков касательных к окружности 8 класс

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол — прямой. Из треугольника получим, что угол равен градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги — тоже градуса.

. Найдите угол , если его сторона касается окружности, — центр окружности, а большая дуга окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.

Свойство отрезков касательных к окружности 8 класс

Это чуть более сложная задача. Центральный угол опирается на дугу , следовательно, он равен градусов. Тогда угол равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол — прямой. Тогда угол равен .

. Хорда стягивает дугу окружности в . Найдите угол между этой хордой и касательной к окружности, проведенной через точку . Ответ дайте в градусах.

Свойство отрезков касательных к окружности 8 класс

Проведем радиус в точку касания, а также радиус . Угол равен . Треугольник — равнобедренный. Нетрудно найти, что угол равен градуса, и тогда угол равен градусов, то есть половине угловой величины дуги .

Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

. К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.

Свойство отрезков касательных к окружности 8 класс

Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника складывается из периметров отсеченных треугольников.

Ты нашел то, что искал? Поделись с друзьями!

Вот более сложная задача из вариантов ЕГЭ:

. Около окружности описан многоугольник, площадь которого равна . Его периметр равен . Найдите радиус этой окружности.

Свойство отрезков касательных к окружности 8 класс

Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку — и проведите перпендикулярные сторонам радиусы в точки касания.

Соедините точку с вершинами . Получились треугольники и .
Очевидно, что площадь многоугольника .
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Презентация по геометрии на тему: «Свойство и признак Касательной к окружности» ( 8 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся

Сертификат и скидка на обучение каждому участнику

Свойство отрезков касательных к окружности 8 класс

Свойство отрезков касательных к окружности 8 класс

Описание презентации по отдельным слайдам:

Свойство отрезков касательных к окружности 8 класс

Касательная к окружности, ее свойство и признак Учитель математики МАОУ СОШ №45 Калининграда, Маврина Т.В.

Взаимное расположение прямой и окружности r d > r Окружность и прямая не имеют общих точек

Свойство отрезков касательных к окружности 8 класс

Взаимное расположение прямой и окружности d r d

Свойство отрезков касательных к окружности 8 класс

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Свойство отрезков касательных к окружности 8 класс

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 679 человек из 75 регионов

Свойство отрезков касательных к окружности 8 класс

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 302 человека из 66 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Урок 50. Свойство отрезков хорд и касательных (8 класс)Скачать

Урок 50.  Свойство отрезков хорд и касательных (8 класс)

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 507 728 материалов в базе

Материал подходит для УМК

Свойство отрезков касательных к окружности 8 класс

«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

§ 1. Касательная к окружности

Другие материалы

Свойство отрезков касательных к окружности 8 класс

  • 15.03.2019
  • 313
  • 0

Свойство отрезков касательных к окружности 8 класс

  • 15.03.2019
  • 2124
  • 49

Свойство отрезков касательных к окружности 8 класс

  • 15.03.2019
  • 7385
  • 1007

Свойство отрезков касательных к окружности 8 класс

  • 14.03.2019
  • 410
  • 0

Свойство отрезков касательных к окружности 8 класс

  • 14.03.2019
  • 431
  • 4

Свойство отрезков касательных к окружности 8 класс

  • 14.03.2019
  • 278
  • 0

Свойство отрезков касательных к окружности 8 класс

  • 05.01.2019
  • 1875
  • 132

Свойство отрезков касательных к окружности 8 класс

  • 14.12.2018
  • 1176
  • 5

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.03.2019 1234
  • PPTX 648 кбайт
  • 36 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Маврина Татьяна Васильевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Свойство отрезков касательных к окружности 8 класс

  • На сайте: 5 лет и 2 месяца
  • Подписчики: 0
  • Всего просмотров: 103135
  • Всего материалов: 110

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Свойство отрезков касательных к окружности 8 класс

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Свойство отрезков касательных к окружности 8 класс

День памяти жертв холокоста включен в примерный план воспитательной работы

Время чтения: 1 минута

Свойство отрезков касательных к окружности 8 класс

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

Свойство отрезков касательных к окружности 8 класс

Школы Пскова перевели на дистанционное обучение

Время чтения: 2 минуты

Свойство отрезков касательных к окружности 8 класс

Минпросвещения намерено решить вопрос с третьей сменой в школах в 2023 году

Время чтения: 1 минута

Свойство отрезков касательных к окружности 8 класс

Проверки показали невыполнение в ряде регионов санитарных правил в школах

Время чтения: 1 минута

Свойство отрезков касательных к окружности 8 класс

В Сыктывкаре школьников переведут на дистанционное обучение

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🔥 Видео

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

КАСАТЕЛЬНАЯ к ОКРУЖНОСТИ 8 класс геометрия АтанасянСкачать

КАСАТЕЛЬНАЯ к ОКРУЖНОСТИ 8 класс геометрия Атанасян

Геометрия 8 класс : Касательная к окружностиСкачать

Геометрия 8 класс : Касательная к окружности

Касательная к окружности. 8 классСкачать

Касательная к окружности. 8 класс

8 класс. Геометрия. Свойство отрезков хорд и касательныхСкачать

8 класс. Геометрия. Свойство отрезков хорд и касательных

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Задание 25 Свойство отрезков касательныхСкачать

Задание 25 Свойство отрезков касательных

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Геометрия 8 класс. Касательная к окружностиСкачать

Геометрия 8 класс. Касательная к окружности

Свойство отрезков касательныхСкачать

Свойство отрезков касательных

КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ в точке ЗАДАЧИ 8 классСкачать

КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ в точке ЗАДАЧИ 8 класс

Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

ОГЭ Задание 24 Свойство отрезков касательныхСкачать

ОГЭ Задание 24 Свойство отрезков касательных
Поделиться или сохранить к себе: