Соотношение радиусов вписанной и описанной окружности правильного треугольника

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Соотношение радиусов вписанной и описанной окружности правильного треугольника

2. Радиус вписанной окружности:
Соотношение радиусов вписанной и описанной окружности правильного треугольника

3. Радиус описанной окружности:
Соотношение радиусов вписанной и описанной окружности правильного треугольника

4. Периметр:
Соотношение радиусов вписанной и описанной окружности правильного треугольника

5. Площадь:
Соотношение радиусов вписанной и описанной окружности правильного треугольника

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Правильный треугольник. Площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен градусов.
Правильный треугольник называют еще равносторонним.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Каждая из высот правильного треугольника является также его медианой и биссектрисой.
Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна .

Высота правильного треугольника:
Радиус окружности, вписанной в правильный треугольник: .
Радиус описанной окружности в два раза больше: .
Площадь правильного треугольника: .

Все эти формулы легко доказать. Если вы нацелены на решение задач части — докажите их самостоятельно.

. Сторона правильного треугольника равна . Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности .

. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна .

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.

. Сторона правильного треугольника равна . Найдите радиус окружности, описанной около этого треугольника.

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Радиус окружности, описанной вокруг правильного треугольника, равен .

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Равносторонний (правильный) треугольник

Равносторонний или правильный треугольник — треугольник, у которого три стороны равны. Все углы равностороннего треугольника равны.

Равносторонним треугольником называется такой треугольник, у которого все стороны равны, то есть АВ = ВС = АС (рис. 1)

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Свойства равностороннего (правильного) треугольника

  1. Все углы равностороннего треугольника равны по 60°

∠А=∠С=∠В=60°

  1. Биссектрисы треугольника являются медианами и высотами, то есть равны и точка их пересечения, является центром вписанной окружности (рис. 2).

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Из (рис. 2) обозначения:

h — высота=биссектриса=медиана

R — радиус описанной окружности
r — радиус вписанной окружности
a — стороны правильного треугольника

Формула периметра равностороннего треугольника:

P=3·a

Формула площади правильного треугольника:Соотношение радиусов вписанной и описанной окружности правильного треугольника

Формула высоты (или медианы или биссектрисы) равностороннего треугольника:

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Радиус вписанной окружности в равносторонний треугольник:

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Радиус описанной окружности в равносторонний треугольник:

Соотношение радиусов вписанной и описанной окружности правильного треугольника

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.6 / 5. Количество оценок: 5

🎥 Видео

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольникаСкачать

Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольника

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Формулы для радиусов вписанной и описанной окружностей треугольника Геометрия 9классСкачать

Формулы для радиусов вписанной и описанной окружностей треугольника Геометрия 9класс
Поделиться или сохранить к себе: