Для примера изобразим прямоугольник ABCD без осей проекций (рис. 115, а). Расстояние горизонтальной и профильной проекций от фронтальной проекции выберем произвольно. Встает вопрос о том, можно ли теперь «восстановить» положение осей, а следовательно, и плоскостей проекций. Для построения постоянной прямой чертежа (рис. 115, б) используем горизонтальную и профильную проекции любой точки, например точки А. Через точку А1 проведем горизонтальную линию связи, а через точку А3 — вертикальную линию связи. Проведенные прямые пересекутся между собой в точке А0, через которую проведем постоянную прямую k123 под углом 45 градусов к горизонтальной линии связи. Очевидно, что постоянная прямая будет единственной. Этого нельзя сказать о системе координатных плоскостей, которых может быть много. Действительно, одну из систем можно определить, приняв горизонтально-вертикальную линию связи за направление осей проекций x12 и z23. Точка A0 будет для этой системы началом координат O123. Плоскость прямоугольника будет прикасаться своей стороной AD к фронтальной плоскости проекции П2. Вторую систему можно получить, если провести координатные оси х’13 и z’23 через точку О’123, являющуюся точкой пересечения постоянной прямой с линией D2D3. В новой системе прямоугольник будет стоять на горизонтальной плоскости проекций П1, пересекаясь с ней по прямой DC. В промежутке между осями первых двух систем можно провести еще большое количество осей, которые определят новые системы плоскостей. Одну из таких систем определяют оси х212 и z223, пересекающиеся между собой в точке О1, являющейся началом координат третьей системы плоскостей. В последнем случае прямоугольник отстоит от всех трех плоскостей проекций.
Итак, найдя постоянную прямую чертежа, мы можем построить одну из возможных систем плоскостей проекций. Очевидно, что начало координат любой системы должно находиться на постоянной прямой чертежа. Отсюда следует, что постоянная прямая чертежа является геометрическим местом точек, фиксирующих начало координат всех возможных систем плоскостей проекций П2, П3.
При построении проекций четырехугольника общего положения нельзя взять четыре произвольные точки. Как только мы возьмем три точки, плоскость определится, и четвертую точку надо строить при условии, чтобы она принадлежала этой плоскости. Практически пользуются диагоналями проекций четырехугольника (рис. 115, в).
Фронтальную проекцию четырехугольника ABCD Рис. 116 строим произвольно; также произвольно строим горизонтальные проекции трех точек А1, В1 и С1 треугольника A1B1C1. Для построения горизонтальной проекции D1 точки D проводим фронтальные проекции А2С2 и D2B2 диагоналей четырехугольника.
Проекции диагоналей пересекутся между собой в точке Е2. Находим горизонтальную проекцию E2 этой точки на горизонтальной проекции А1С1 будущей диагонали АС; соединяем точки В1 и E1 и на продолжении этой линии находим точку D1 на вертикальной линии связи D2D1. При таком построении четырехугольник ABCD будет плоским. Пользуясь вспомогательными прямыми, пересекающимися со сторонами четырехугольника, можно построить проекции пятиугольника, шестиугольника и т. д.
Построим проекции правильного шестиугольника, вписанного в окружность, при горизонтальном их расположении (рис, 116, а). Построение начинаем с проведения окружности; затем вписываем в нее правильный шестиугольник А1В1C1D1E1F1.
Фронтальная проекция шестиугольника изобразится прямой горизонтально расположенной линией A2D2, точки B2F2 и С2Е2, принадлежащие этой линии, попарно совпадут.
В практике нередко приходится строить наклонно расположенные многоугольники, и особенно, окружности. Придадим плоскостям шестиугольника и круга наклонное положение, т. е. расположим их во фронтально-проецирующей плоскости т (рис. 116, б). При таком расположении плоскости прямые FB и ЕС шестиугольника и диаметр HG круга останутся фронтально-проецирующими прямыми и спроецируются на плоскость П1 в истинную величину. Наоборот, прямые ВС, AD и FE спроецируются с искажением, зависящим от величины угла наклона плоскости т. В связи с этим горизонтальная проекция шестиугольника не будет являться правильным шестиугольником, а горизонтальная проекция круга будет проецироваться эллипсом, большая ось которого H1G1, малая — A1D1
Аналитический портал Ua-News Главные новости Украины: политика, интернет, шоу-BIZ, спорт, столица.
Видео:Построение треугольника в трёх проекцияхСкачать
Черчение
Видео:2 2 2 изометрия треугольника и шестиугольникаСкачать
Способы построения изометрической проекции плоских фигур, геометрических тел и деталей
Для выполнения изометрической проекции любой детали необходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.
Правила построения изометрических проекций геометрических фигур. Построение любой плоской фигуры следует начинать с проведения осей изометрических проекций.
При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе стороны половину длины стороны квадрата. Через полученные засечки проводят прямые, параллельные осям.
При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные засечки отрезками прямых.
Рис. 109. Прямоугольная и изометрические проекции квадрата
Рис. 110. Прямоугольная и изометрические проекции треугольника
При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе стороны) радиус описанной окружности, а по другой — H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Соединяют полученные засечки отрезками прямых.
Рис. 111. Прямоугольная и изометрические проекции шестиугольника
Рис. 112. Прямоугольная и изометрические проекции круга
При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, параллельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заменяющий аксонометрическую проекцию круга.
Используя описанные построения, можно выполнить аксонометрические проекции простых геометрических тел (табл. 10).
10. Изометрические проекции простых геометрических тел
Способы построения изометрической проекции детали:
1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма которых имеет плоскую грань, называемую формообразующей; ширина (толщина) детали на всем протяжении одинакова, на боковых поверхностях отсутствуют пазы, отверстия и другие элементы. Последовательность построения изометрической проекции заключается в следующем:
1) построение осей изометрической проекции;
2) построение изометрической проекции формообразующей грани;
3) построение проекций остальных граней посредством изображения ребер модели;
Рис. 113. Построение изометрической проекции детали, начиная от формообразующей грани
4) обводка изометрической проекции (рис. 113).
- Способ построения изометрической проекции на основе последовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
- Способ построения изометрической проекции на основе последовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных определенным образом друг с другом (рис. 115).
- Комбинированный способ построения изометрической проекции. Изометрическую проекцию детали, форма которой получена в результате сочетания различных способов формообразования, выполняют, используя комбинированный способ построения (рис. 116).
Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) невидимых частей формы.
Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов
Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов
Рис. 116. Использование комбинированного способа построения изометрической проекции детали
Рис. 117. Варианты изображения изометрических проекций детали: а — с изображением невидимых частей;
б — без изображения невидимых частей
Видео:Изометрическая проекция треугольникаСкачать
Как нарисовать треугольник в проекции
Раздел 2: Проецирование (6 часов)
Урок № 9: Рациональные построения в изометрии. Проекции плоских фигур и окружности
Предыдущий урок | Поурочное планирование | Следующий урок |