Сколько точек может оказаться в пересечении отрезка и окружности

Школе NET

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 5905369

Сколько точек может оказаться в пересечении отрезка и окружности

Главный Попко

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Сколько точек может оказаться в пересечении 1)прямой и окружности 2)двух окружностей

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Всё про окружность и круг

Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.

Сколько точек может оказаться в пересечении отрезка и окружности

Сколько точек может оказаться в пересечении отрезка и окружности

Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

Сколько точек может оказаться в пересечении отрезка и окружности

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

Сколько точек может оказаться в пересечении отрезка и окружности

Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.

Сколько точек может оказаться в пересечении отрезка и окружности

Квадрат касательной равен произведению секущей на ее внешнюю часть

Сколько точек может оказаться в пересечении отрезка и окружности

Центральный угол — это угол, вершина которого совпадает с центром окружности.

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

Сколько точек может оказаться в пересечении отрезка и окружности

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

Сколько точек может оказаться в пересечении отрезка и окружности

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

Сколько точек может оказаться в пересечении отрезка и окружности

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

Сколько точек может оказаться в пересечении отрезка и окружности

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = ПR 2 а/360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Пересечение Окружности Отрезка Линии

Я пытаюсь определить точку, в которой отрезок линии пересекаются окружности. Например, учитывая любую точку между P0 и P3 (а также предполагая, что вы знаете радиус), какой самый простой способ определить P3?

Сколько точек может оказаться в пересечении отрезка и окружности

Видео:Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой

5 ответов

у вас есть система уравнений. Круг определяется: x^2 + y^2 = r^2 . Линии определяется y = y0 + [(y1 — y0) / (x1 — x0)]·(x — x0) . Подставьте вторую в первую, вы получите x^2 + (y0 + [(y1 — y0) / (x1 — x0)]·(x — x0))^2 = r^2 . Решите это, и вы получите значения 0-2 для x. Подключите их обратно в любое уравнение, чтобы получить ваши значения для y.

  • найти угол между P0 и P1
  • нарисуйте линию под этим углом от P0 на расстоянии r, что даст вам P3

из центра круга и радиуса вы можете написать уравнение, описывающее круг. Из двух точек P0 и P1 можно написать уравнение, описывающее линию.

таким образом, у вас есть 2 уравнения в 2 неизвестных, которые вы можете решить путем замены.

и (x1,y1) = координаты точки P1

уравнение для круга:

уравнение для строка:

подключение 2-го уравнения в первое, получим:

аналогично вы можете найти, что

точка (x,y) — это точка пересечения между линией и кругом, (x,y) — ваш ответ.

перейти к этому коду..его сэкономить время

КОД MATLAB

функция [ флаг] = circleLineSegmentIntersection2 (Ax, Ay, Bx, By, Cx, Cy, R)

% A и B — две конечные точки отрезка линии, а C-центр окружность, % R-радиус окружности. Эта вычислительная функция ближайшая точка fron C к сегменту %, если расстояние до ближайшая точка > R возврат 0 else 1

🎦 Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис Трушин

Точка, прямая и отрезок. 1 часть. 7 класс.Скачать

Точка, прямая и отрезок. 1 часть. 7 класс.

Пересечения прямых, лучей, отрезковСкачать

Пересечения прямых, лучей, отрезков

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Взаимное расположение и точки пересечения прямой и окружностиСкачать

Взаимное расположение и точки пересечения прямой и окружности

Задача №16. Пересекающиеся и касающиеся окружности.Скачать

Задача №16. Пересекающиеся и касающиеся окружности.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение
Поделиться или сохранить к себе: