Сила реакции опоры движение по окружности

Сила реакции опоры

Сила реакции опоры — это сила, с которой опора действует на тело. Она направлена перпендикулярно поверхности, поэтому такую силу называют силой нормальной реакции. Обозначают ее символом N и измеряют в Ньютонах.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Тело находится на выпуклой или вогнутой поверхности

Рассмотрим рисунок 1. Тело находится на опоре и давит на нее своим весом. Опора реагирует на воздействие тела и отвечает ему силой (vec). Эта сила направлена перпендикулярно поверхности, вдоль вектора нормали, поэтому ее называют нормальной силой.

Примечания:

  • Нормаль – значит, перпендикуляр.
  • Искривленную, т.е., выпуклую, или вогнутую поверхность, можно считать частью сферы. Центр сферы – точка, она находится внутри сферы, от этой точки к поверхности сферы можно провести радиус.

(vec left( H right) ) – сила, с которой опора действует на тело.

Сила реакции опоры движение по окружности

Когда тело находится на выпуклой поверхности (рис. 1а), реакция направлена вдоль радиуса от центра сферы наружу, за ее пределы.

Если же тело находится на вогнутой части (рис. 1б) поверхности, реакция (vec) направлена по радиусу внутрь сферической поверхности к ее центру.

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Тело опирается на поверхность в двух точках

На рисунках 2а и 2б изображено продолговатое тело (к примеру, стержень), опирающееся на поверхности двумя своими точками.

Сила реакции опоры движение по окружности

В точках соприкосновения поверхность отвечает телу силой (vec) своей реакции. Видно, что в каждая сила реакции направлена перпендикулярно поверхности.

Cилы реакции (vec<N_>) и (vec<N_>) имеют различные направления и в общем случае не равны по модулю.

Примечание: Сила — это вектор. Между векторами можно ставить знак равенства, только, когда совпадают характеристики векторов.

Видео:2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | ЛекториумСкачать

2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | Лекториум

Как рассчитать силу нормальной реакции

Пусть тело давит на опору своим весом. В местах соприкосновения тела с опорой наблюдается упругая деформация. При этом опора стремится избавиться от возникшей деформации и вернуться в первоначальное состояние. Силы, с которыми опора упруго сопротивляется воздействию тела, имеют электромагнитную природу. Когда сближаются электронные оболочки атомов тела и опоры, между ними возникает сила отталкивания. Она и является силой реакции опоры на воздействие тела.

Примечание: Сила реакции (vec) распределяется по всей площади соприкосновения тела и опоры. Но для удобства ее обычно считают сосредоточенной силой. Ее изображают на границах соприкасающихся поверхностей исходящей из точки, расположенной под центром масс тела.

Для того, чтобы рассчитать силу реакции, нужно понимать законы Ньютона, уметь составлять силовые уравнения и знать, что такое равнодействующая.

На рисунке 3 изображены тела, находящиеся на горизонтальной – а) и наклонной – б) поверхностях.

Сила реакции опоры движение по окружности

Рассмотрим подробнее рисунок 3а. Тело на горизонтальной поверхности находится в покое. Значит, выполняются условия равновесия тела.

По третьему закону Ньютона, сила, с которой тело действует на опору, равна по модулю весу тела и направлена противоположно весу.

(m vec left( H right) ) – сила, с которой тело действует на опору;

(vec left( H right) ) – сила, с которой опора отвечает телу;

Рисунок 3б иллюстрирует тело на наклонной поверхности. Перпендикулярно соприкасающимся поверхностям проведена ось Oy. Проекция силы (m vec) на ось — это (mg_), она будет направлена противоположно реакции опоры (vec) и численно равна ей.

Примечание: Выражение «численно равна» нужно понимать, как «длины векторов равны».

(alpha left(text right) ) – угол между силой (mg) и осью Oy.

Видео:Урок 90. Движение по окружности (ч.2)Скачать

Урок 90. Движение по окружности (ч.2)

Движение тела под действием нескольких сил по окружности

Из кодификатора по физике, 2020.

«1.2.4. Второй закон Ньютона: для материальной точки в ИСО

Сила реакции опоры движение по окружности

1.2.8. Сила упругости. Закон Гука:

Сила реакции опоры движение по окружности

1.2.9. Сила трения. Сухое трение. Сила трения скольжения: Сила реакции опоры движение по окружности

Сила трения покоя:

Сила реакции опоры движение по окружности

Сила реакции опоры движение по окружности

3. Определите значения проекций всех величин.

4. Решите полученные уравнения. При необходимости, исходя из физиче-ской природы, выразите силы через величины, от которых они зависят.

Задача 1. Мальчик массой 50 кг качается на качелях с длиной подвеса 4 м. Определите силу, с которой он давит на сиденье при прохождении нижнего положения со скоростью 6 м/с.

Решение. При использовании второго закона Ньютона, мы применяем силы, действующие на тело. Сила Fдавл – это сила, с которой мальчик давит на сиденье качелей. По третьему закону Ньютона, с такой же по величине силой, но противоположной по направлению, качели будут действовать на мальчика – это сила реакции опоры (N). Тогда

Сила реакции опоры движение по окружности

На мальчика действуют сила тяжести и сила реакции опоры (N). При движении по дуге окружности в нижней точке ускорение направлено к центру окружности (вверх). Ось Y направим вверх (рис. 1). Запишем второй закон Ньютона:

Сила реакции опоры движение по окружности

где , R=l. С учетом уравнений (1) и (2) получаем

Сила реакции опоры движение по окружности

Сила реакции опоры движение по окружности

Задача 2. На горизонтальном диске, который равномерно вращается вокруг вертикальной оси, проходящей через центр диска, лежит небольшая монета. Коэффициент трения между монетой и поверхностью диска равен 0,25. Угловая скорость вращения диска 5,0 рад/с. Определите максимальное расстояние (в см) между центром монеты и осью вращения, при котором монета не соскальзывает с диска.

Решение. На монету, лежащую на диске, действуют: сила тяжести и сила реакции опоры (N) — они направлены по вертикали (вдоль оси 0Y на рис. 2), сила трения (Fтр) — она направлена по горизонтали. Так как тело не движется, то сила трения — это сила трения покоя.

Монета вращается вместе с диском, поэтому у тела есть центростреми-тельное ускорение, направленное к центру диска. А так как на тело действует только одна горизонтальная сила (Fтр), то она будет направлена в ту же сторону, что и ускорение, т.е. к центру дис-ка.

Оси координат направим так, как показано на рис. 2. Запишем второй закон Ньютона:

Сила реакции опоры движение по окружности

При любом расстоянии _’ alt=’l>_’ /> тело начнет скользить по диску к краю. Тогда

Сила реакции опоры движение по окружности

Задача 3. Груз, подвешенный на нити длиной 1,4 м, двигаясь равно-мерно, описывает в горизонтальной плоскости окружность (конический ма-ятник). Определите скорость, с которой движется груз, если во время его движения нить образует с вертикалью постоянный угол в 30º.

Решение. На груз действуют сила тяжести и сила натяжения подвеса (T). При равномерном движении по окружности возникает центростремительное ускорение, направленное горизонтально. Оси координат выберем так, как показано на рис. 3. Запишем второй закон Ньютона:

Сила реакции опоры движение по окружности

Задача 4. По выпуклому мосту, радиус кривизны которого 90 м, со скоростью 54 км/ч движется автомобиль массой 2,0 т. В точке моста, направление на которую из центра кривизны моста составляет с направле-нием на вершину моста угол α, автомобиль давит с силой 14,4 кН. Определите угол α.

Решение. Сила Fд — это сила, с которой автомобиль давит на дорогу. По третьему закону Ньютона, с такой же по величине силой, но противоположной по направле-нию, дорога будет действовать на автомобиль, а это сила реакции опоры (N). Тогда

Сила реакции опоры движение по окружности

На автомобиль действуют сила тяжести , сила реакции опоры (N), сила трения (Fтр) и сила тяги (F). При движении по дуге окружности возникает центростремительное ускорение, которое направлено к центру кривизны (перпендикулярно поверхно-сти). Ось 0Y направим вдоль ускорения, чтобы не учитывать тангенциальное ускорение (рис. 4).

Видео:Возникновение силы реакции опорыСкачать

Возникновение силы реакции опоры

Асламазов Л.Г. Движение по окружности // Квант

Асламазов Л.Г. Движение по окружности // Квант. — 1972. — № 9. — С. 51-57.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Для описания движения по окружности наряду с линейной скоростью вводят понятие угловой скорости. Если точка при движении по окружности за время Δt описывает дугу, угловая мера которой Δφ, то угловая скорость Сила реакции опоры движение по окружности.

Угловая скорость ω связана с линейной скоростью υ соотношением υ = ω·r, где r — радиус окружности, по которой движется точка (рис. 1). Понятие угловой скорости особенно удобно для описания вращения твердого тела вокруг оси. Хотя линейные скорости у точек, находящихся на разном расстоянии от оси, будут неодинаковыми, их угловые скорости будут равны, и можно говорить об угловой скорости вращения тела в целом.

Сила реакции опоры движение по окружности

Задача 1. Диск радиуса r катится без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянная и равна υп. С какой угловой скоростью при этом вращается диск?

Каждая точка диска участвует в двух движениях — в поступательном движении со скоростью υп вместе с центром диска и во вращательном движении вокруг центра с некоторой угловой скоростью ω.

Для нахождения ω воспользуемся отсутствием проскальзывания, то есть тем, что в каждый момент времени скорость точки диска, соприкасающейся с плоскостью, равна нулю. Это означает, что для точки А (рис. 2) скорость поступательного движения υп равна по величине и противоположна по направлению линейной скорости вращательного движения υвр = ω·r. Отсюда сразу получаем Сила реакции опоры движение по окружности.

Сила реакции опоры движение по окружности

Задача 2. Найти скорости точек В, С и D того же диска (рис. 3).

Сила реакции опоры движение по окружности

Рассмотрим вначале точку В. Линейная скорость ее вращательного движения направлена вертикально вверх и равна Сила реакции опоры движение по окружности, то есть по величине равна скорости поступательного движения, которая, однако, направлена горизонтально. Складывая векторно эти две скорости, находим, что результирующая скорость υB по величине равна Сила реакции опоры движение по окружностии образует угол 45º с горизонтом. У точки С скорости вращательного и поступательного движения направлены в одну сторону. Результирующая скорость υC равна 2υп и направлена горизонтально. Аналогично находится и скорость точки D (см. рис. 3).

Даже в том случае, когда скорость точки, движущейся по окружности, не меняется по величине, точка имеет некоторое ускорение, так как меняется направление вектора скорости. Это ускорение называется центростремительным. Оно направлено к центру окружности и равно Сила реакции опоры движение по окружности(R — радиус окружности, ω и υ — угловая и линейная скорости точки).

Если же скорость точки, движущейся по окружности, меняется не только по направлению, но и по величине, то наряду с центростремительным ускорением существует и так называемое тангенциальное ускорение. Оно направлено по касательной к окружности и равно отношению Сила реакции опоры движение по окружности(Δυ — изменение величины скорости за время Δt).

Задача 3. Найти ускорения точек А, В, С и D диска радиуса r, катящегося без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянна и равна υп (рис. 3).

В системе координат, связанной с центром диска, диск вращается с угловой скоростью ω, а плоскость движется поступательно со скоростью υп. Проскальзывание между диском и плоскостью отсутствует, следовательно, Сила реакции опоры движение по окружности. Скорость поступательного движения υп не меняется, поэтому угловая скорость вращения диска постоянная и точки диска имеют только центростремительное ускорение Сила реакции опоры движение по окружности, направленное к центру диска. Так как система координат движется без ускорения (с постоянной скоростью υп), то в неподвижной системе координат ускорения точек диска будут теми же.

Перейдем теперь к задачам на динамику вращательного движения. Вначале рассмотрим простейший случай, когда движение по окружности происходит с постоянной скоростью. Так как ускорение тела при этом направлено к центру, то и векторная сумма всех сил, приложенных к телу, должна быть тоже направлена к центру, и по II закону Ньютона Сила реакции опоры движение по окружности.

Следует помнить, что в правую часть этого уравнения входят только реальные силы, действующие на данное тело со стороны других тел. Никакой центростремительной силы при движении по окружности не возникает. Этим термином пользуются просто для обозначения равнодействующей сил, приложенных к телу, движущемуся по окружности. Что касается центробежной силы, то она возникает только при описании движения по окружности в неинерциальной (вращающейся) системе координат. Мы пользоваться здесь понятием центростремительной и центробежной силы вообще не будем.

Задача 4. Определить наименьший радиус закругления дороги, которое автомобиль может пройти при скорости υ = 70 км/ч и коэффициенте трения шин о дорогу k =0,3.

На автомобиль действуют сила тяжести Р = m·g, сила реакции дороги N и сила трения Fтp между шинами автомобиля и дорогой. Силы Р и N направлены вертикально и равны по величине: P = N. Сила трения, препятствующая проскальзыванию («заносу») автомобиля, направлена к центру поворота и сообщает центростремительное ускорение: Сила реакции опоры движение по окружности. Максимальное значение силы трения Fтр max = k·N = k·m·g, поэтому минимальное значение радиуса окружности, по которой еще возможно движение со скоростью υ, определяется из уравнения Сила реакции опоры движение по окружности. Отсюда Сила реакции опоры движение по окружности(м).

Сила реакции дороги N при движении автомобиля по окружности не проходит через центр тяжести автомобиля. Это связано с тем, что ее момент относительно центра тяжести должен компенсировать момент силы трения, стремящийся опрокинуть автомобиль. Величина силы трения тем больше, чем больше скорость автомобиля Сила реакции опоры движение по окружности. При некотором значении скорости момент силы трения превысит момент силы реакции и автомобиль опрокинется.

Задача 5. При какой скорости автомобиль, движущийся по дуге окружности радиуса R = 130 м, может опрокинуться? Центр тяжести автомобиля находится на высоте h = 1 м над дорогой, ширина следа автомобиля l = 1,5 м (рис. 4).

Сила реакции опоры движение по окружности

В момент опрокидывания автомобиля как сила реакции дороги N, так и сила трения Fтp приложены к «внешнему» колесу. При движении автомобиля по окружности со скоростью υ на него действует сила трения Сила реакции опоры движение по окружности. Эта сила создает момент относительно центра тяжести автомобиля Сила реакции опоры движение по окружности. Максимальный момент силы реакции дороги N = m·g относительно центра тяжести равен Сила реакции опоры движение по окружности(в момент опрокидывания сила реакции проходит через внешнее колесо). Приравнивая эти моменты, найдем уравнение для максимальной скорости, при которой автомобиль еще не опрокинется:

Сила реакции опоры движение по окружности

Откуда Сила реакции опоры движение по окружности≈ 30 м/с ≈ 110 км/ч.

Чтобы автомобиль мог двигаться с такой скоростью, необходим коэффициент трения Сила реакции опоры движение по окружности(см. предыдущую задачу).

Аналогичная ситуация возникает при повороте мотоцикла или велосипеда. Сила трения, создающая центростремительное ускорение, имеет момент относительно центра тяжести, стремящийся опрокинуть мотоцикл. Поэтому для компенсации этого момента моментом силы реакции дороги мотоциклист наклоняется в сторону поворота (рис. 5).

Задача 6. Мотоциклист едет по горизонтальной дороге со скоростью υ = 70 км/ч, делая поворот радиусом R = 100 м. На какой угол α к горизонту он должен при этом наклониться, чтобы не упасть?

Сила трения между мотоциклом и дорогой Сила реакции опоры движение по окружности, так как она сообщает мотоциклисту центростремительное ускорение. Сила реакции дороги N = m·g. Условие равенства моментов силы трения и силы реакции относительно центра тяжести дает уравнение: Fтp·l·sin α = N·l·cos α, где l — расстояние ОА от центра тяжести до следа мотоцикла (см. рис. 5).

Сила реакции опоры движение по окружности

Подставляя сюда значения Fтp и N, находим что Сила реакции опоры движение по окружностиили Сила реакции опоры движение по окружности. Отметим, что равнодействующая сил N и Fтp при этом угле наклона мотоцикла проходит через центр тяжести, что и обеспечивает равенство нулю суммарного момента сил N и Fтp.

Для того, чтобы увеличить скорость движения по закруглению дороги, участок дороги на повороте делают наклонным. При этом в создании центростремительного ускорения, кроме силы трения, участвует и сила реакции дороги.

Задача 7. С какой максимальной скоростью υ может двигаться автомобиль по наклонному треку с углом наклона α при радиусе закругления R и коэффициенте трения шин о дорогу k?

На автомобиль действуют сила тяжести m·g, сила реакции N, направленная перпендикулярно плоскости трека, и сила трения Fтp, направленная вдоль трека (рис. 6).

Сила реакции опоры движение по окружности

Так как нас не интересуют в данном случае моменты сил, действующих на автомобиль, мы нарисовали все силы приложенными к центру тяжести автомобиля. Векторная сумма всех сил должна быть направлена к центру окружности, по которой движется автомобиль, и сообщать ему центростремительное ускорение. Поэтому сумма проекций сил на направление к центру (горизонтальное направление) равна Сила реакции опоры движение по окружности, то есть

Сила реакции опоры движение по окружности

Сумма проекций всех сил на вертикальное направление равна нулю:

Подставляя в эти уравнения максимальное возможное значение силы трения Fтp = k·N и исключая силу N, находим максимальную скорость Сила реакции опоры движение по окружности, с которой еще возможно движение по такому треку. Это выражение всегда больше значения Сила реакции опоры движение по окружности, соответствующего горизонтальной дороге.

Разобравшись с динамикой поворота, перейдем к задачам на вращательное движение в вертикальной плоскости.

Задача 8. Автомобиль массы m = 1,5 т движется со скоростью υ = 70 км/ч по дороге, показанной на рисунке 7. Участки дороги АВ и ВС можно считать дугами окружностей радиуса R = 200 м, касающимися друг друга в точке В. Определить силу давления автомобиля на дорогу в точках А и С. Как меняется сила давления при прохождении автомобилем точки В?

Сила реакции опоры движение по окружности

В точке А на автомобиль действуют сила тяжести Р = m·g и сила реакции дороги NA. Векторная сумма этих сил должна быть направлена к центру окружности, то есть вертикально вниз, и создавать центростремительное ускорение: Сила реакции опоры движение по окружности, откуда Сила реакции опоры движение по окружности(Н). Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе реакции. В точке С векторная сумма сил направлена вертикально вверх: Сила реакции опоры движение по окружностии Сила реакции опоры движение по окружности(Н). Таким образом, в точке А сила давления меньше силы тяжести, а в точке С — больше.

В точке В автомобиль переходит с выпуклого участка дороги на вогнутый (или наоборот). При движении по выпуклому участку проекция силы тяжести на направление к центру должна превышать силу реакции дороги NB1, причем Сила реакции опоры движение по окружности. При движении по вогнутому участку дороги, наоборот, сила реакции дороги NВ2 превосходит проекцию силы тяжести: Сила реакции опоры движение по окружности.

Из этих уравнений получаем, что при прохождении точки В сила давления автомобиля на дорогу меняется скачком на величину Сила реакции опоры движение по окружности≈ 6·10 3 Н. Разумеется, такие ударные нагрузки действуют разрушающе как на автомобиль, так и на дорогу. Поэтому дороги и мосты всегда стараются делать так, чтобы их кривизна менялась плавно.

При движении автомобиля по окружности с постоянной скоростью сумма проекций всех сил на направление, касательное к окружности, должна быть равна нулю. В нашем случае касательная составляющая силы тяжести уравновешивается силой трения между колесами автомобиля и дорогой.

Величина силы трения регулируется вращательным моментом, прикладываемым к колесам со стороны мотора. Этот момент стремится вызвать проскальзывание колес относительно дороги. Поэтому возникает сила трения, препятствующая проскальзыванию и пропорциональная приложенному моменту. Максимальное значение силы трения равно k·N, где k — коэффициент трения между шинами автомобиля и дорогой, N — сила давления на дорогу. При движении автомобиля вниз сила трения играет роль тормозящей силы, а при движении вверх, наоборот, роль силы тяги.

Задача 9. Автомобиль массой m = 0,5 т, движущийся со скоростью υ = 200 км/ч, совершает «мертвую петлю» радиуса R = 100 м (рис. 8). Определить силу давления автомобиля на дорогу в верхней точке петли А; в точке В, радиус-вектор которой составляет угол α = 30º с вертикалью; в точке С, в которой скорость автомобиля направлена вертикально. Возможно ли движение автомобиля по петле с такой постоянной скоростью при коэффициенте трения шин о дорогу k = 0,5?

Сила реакции опоры движение по окружности

В верхней точке петли сила тяжести и сила реакции дороги NA направлены вертикально вниз. Сумма этих сил создает центростремительное ускорение: Сила реакции опоры движение по окружности. Поэтому Сила реакции опоры движение по окружностиН.

Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе NА.

В точке В центростремительное ускорение создается суммой силы реакции и проекции силы тяжести на направление к центру: Сила реакции опоры движение по окружности. Отсюда Сила реакции опоры движение по окружностиН.

Легко видеть, что NB > NA; с увеличением угла α сила реакции дороги увеличивается.

В точке С сила реакции Сила реакции опоры движение по окружностиН; центростремительное ускорение в этой точке создается только силой реакции, а сила тяжести направлена по касательной. При движении по нижней части петли сила реакции будет превышать Сила реакции опоры движение по окружностии максимальное значение Сила реакции опоры движение по окружностиН сила реакции имеет в точке D. Значение Сила реакции опоры движение по окружности, таким образом, является минимальным значением силы реакции.

Скорость автомобиля будет постоянной, если касательная составляющая силы тяжести не превышает максимальной силы трения k·N во всех точках петли. Это условие заведомо выполняется, если минимальное значение Сила реакции опоры движение по окружностипревосходит максимальное значение касательной составляющей силы веса. В нашем случае это максимальное значение равно m·g (оно достигается в точке С), и условие Сила реакции опоры движение по окружностивыполняется при k = 0,5, υ = 200 км/ч, R = 100 м.

Таким образом, в нашем случае движение автомобиля по «мертвой петле» с постоянной скоростью возможно.

Рассмотрим теперь движение автомобиля по «мертвой петле» с выключенным мотором. Как уже отмечалось, обычно момент силы трения противодействует моменту, приложенному к колесам со стороны мотора. При движении автомобиля с выключенным мотором этого момента нет, и силой трения между колесами автомобиля и дорогой можно пренебречь.

Скорость автомобиля уже не будет постоянной — касательная составляющая силы тяжести замедляет или ускоряет движение автомобиля по «мертвой петле». Центростремительное ускорение тоже будет меняться. Создается оно, как обычно, равнодействующей силы реакции дороги и проекции силы тяжести на направление к центру петли.

Задача 10. Какую наименьшую скорость должен иметь автомобиль в нижней точке петли D (см. рис. 8) для того, чтобы совершить ее с выключенным мотором? Чему будет равна при этом сила давления автомобиля на дорогу в точке В? Радиус петли R = 100 м, масса автомобиля m = 0,5 т.

Посмотрим, какую минимальную скорость может иметь автомобиль в верхней точке петли А, чтобы продолжать двигаться по окружности?

Центростремительное ускорение в этой точке дороги создается суммой силы тяжести и силы реакции дороги Сила реакции опоры движение по окружности. Чем меньшую скорость имеет автомобиль, тем меньшая возникает сила реакции NA. При значении Сила реакции опоры движение по окружностиэта сила обращается в нуль. При меньшей скорости сила тяжести превысит значение, необходимое для создания центростремительного ускорения, и автомобиль оторвется от дороги. При скорости Сила реакции опоры движение по окружностисила реакции дороги обращается в нуль только в верхней точке петли. В самом деле, скорость автомобиля на других участках петли будет большей, и как легко видеть из решения предыдущей задачи, сила реакции дороги тоже будет большей, чем в точке А. Поэтому, если автомобиль в верхней точке петли имеет скорость Сила реакции опоры движение по окружности, то он нигде не оторвется от петли.

Теперь определим, какую скорость должен иметь автомобиль в нижней точке петли D, чтобы в верхней точке петли А его скорость Сила реакции опоры движение по окружности. Для нахождения скорости υD можно воспользоваться законом сохранения энергии, как если бы автомобиль двигался только под действием силы тяжести. Дело в том, что сила реакции дороги в каждый момент направлена перпендикулярно перемещению автомобиля, а, следовательно, ее работа равна нулю (напомним, что работа ΔA = F·Δs·cos α, где α — угол между силой F и направлением перемещения Δs). Силой трения между колесами автомобиля и дорогой при движении с выключенным мотором можно пренебречь. Поэтому сумма потенциальной и кинетической энергии автомобиля при движении с выключенным мотором не меняется.

Приравняем значения энергии автомобиля в точках А и D. При этом будем отсчитывать высоту от уровня точки D, то есть потенциальную энергию автомобиля в этой точке будем считать равной нулю. Тогда получаем

Сила реакции опоры движение по окружности

Подставляя сюда значение Сила реакции опоры движение по окружностидля искомой скорости υD, находим: Сила реакции опоры движение по окружности≈ 70 м/с ≈ 260 км/ч.

Если автомобиль въедет в петлю с такой скоростью, то он сможет совершить ее с выключенным мотором.

Определим теперь, с какой силой при этом автомобиль будет давить на дорогу в точке В. Скорость автомобиля в точке В опять легко находится из закона сохранения энергии:

Сила реакции опоры движение по окружности

Подставляя сюда значение Сила реакции опоры движение по окружности, находим, что скорость Сила реакции опоры движение по окружности.

Воспользовавшись решением предыдущей задачи, по заданной скорости находим силу давления в точке B:

Сила реакции опоры движение по окружностиН.

Аналогично можно найти силу давления в любой другой точке «мертвой петли».

1. Найти угловую скорость искусственного спутника Земли, вращающегося по круговой орбите с периодом обращения Т = 88 мин. Найти линейную скорость движения этого спутника, если известно, что его орбита расположена на расстоянии R = 200 км от поверхности Земли.

2. Диск радиуса R помещен между двумя параллельными рейками. Рейки движутся со скоростями υ1 и υ2. Определить угловую скорость вращения диска и скорость его центра. Проскальзывание отсутствует.

3. Диск катится по горизонтальной поверхности без проскальзывания. Показать, что концы векторов скоростей точек вертикального диаметра находятся на одной прямой.

4. Самолет движется по окружности с постоянной горизонтальной скоростью υ = 700 км/час. Определить радиус R этой окружности, если корпус самолета наклонен на угол α = 5°.

5. Груз массы m = 100 г, подвешенный на нити длины l = 1 м, равномерно вращается по кругу в горизонтальной плоскости. Найти период обращения груза, если при его вращении нить отклонена по вертикали на угол α = 30°. Определить также натяжение нити.

6. Автомобиль движется со скоростью υ = 80 км/ч по внутренней поверхности вертикального цилиндра радиуса R = 10 м по горизонтальному кругу. При каком минимальном коэффициенте трения между шинами автомобиля и поверхностью цилиндра это возможно?

7. Груз массой m подвешен на нерастяжимой нити, максимально возможное натяжение которой равно 1,5m·g. На какой максимальный угол α можно отклонить нить от вертикали, чтобы при дальнейшем движении груза нить не оборвалась? Чему будет равно при этом натяжение нити в тот момент, когда нить составит угол α/2 с вертикалью?

I. Угловая скорость искусственного спутника Земли Сила реакции опоры движение по окружности≈ 0,071 рад/с. Линейная скорость спутника υ = ω·R. где R — радиус орбиты. Подставляя сюда R = R3 + h, где R3 ≈ 6400 км, находим υ ≈ 467 км/с.

2. Здесь возможны два случая (рис. 1). Если угловая скорость диска ω, а скорость его центра υ, то скорости точек, соприкасающихся с рейками, будут соответственно равны

(Мы приняли для определенности, что υ1 > υ2). Решая эти системы, находим:

а)Сила реакции опоры движение по окружности

б) Сила реакции опоры движение по окружности

Сила реакции опоры движение по окружности

3. Скорость любой точки М, лежащей на отрезке ОВ (см. рис. 2), находится по формуле υM = υ + ω·rM, где rM — расстояние от точки М до центра диска О. Для любой точки N, принадлежащей отрезку ОА, имеем: υN = υ – ω·rN, где rN — расстояние от точки N до центра. Обозначим через ρ расстояние от любой точки диаметра ВА до точки А соприкосновения диска с плоскостью. Тогда очевидно, что rM = ρ – R и rN = R – ρ = –(ρ – R). где R — радиус диска. Поэтому скорость любой точки на диаметре ВА находится по формуле: υρ = υ + ω·(ρ – R). Так как диск катится без проскальзывания, то Сила реакции опоры движение по окружностии для скорости υρ получаем υρ = ω·ρ. Отсюда следует, что концы векторов скоростей находятся на прямой, выходящей из точки А и наклоненной к диаметру ВА под углом, пропорциональным угловой скорости вращения диска ω.

Сила реакции опоры движение по окружности

Доказанное утверждение позволяет нам сделать вывод, что сложное движение точек, находящихся на диаметре ВА, можно в каждый данный момент рассматривать как простое вращение вокруг неподвижной точки А с угловой скоростью ω, равной угловой скорости вращения вокруг центра диска. В самом деле, в каждый момент скорости этих точек направлены перпендикулярно диаметру ВА, а по величине равны произведению ω на расстояние до точки А.

Оказывается, что это утверждение справедливо для любой точки диска. Более того, оно является общим правилом. При любом движении твердого тела в каждый момент существует ось, вокруг которой тело просто вращается — мгновенная ось вращения.

4. На самолет действуют (см. рис. 3) сила тяжести Р = m·g и подъемная сила N, направленная перпендикулярно плоскости крыльев (так как самолет движется с постоянной скоростью, то сила тяги и сила лобового сопротивления воздуха уравновешивают друг друга). Равнодействующая сил Р и N должна быть направлена к центру окружности, по которой движется самолет, и создавать центростремительное ускорение Сила реакции опоры движение по окружности. Из рисунка находим:

Сила реакции опоры движение по окружностиили Сила реакции опоры движение по окружностикм.

Сила реакции опоры движение по окружности

5. Равнодействующая силы тяжести Р = m·g и силы натяжения нити Т должна создавать центростремительное ускорение ац = ω 2 ·R, где R = l·sin α — радиус круга, по которому вращается груз. Из рисунка 4 получаем:

m·ω 2 ·R = tg α, откуда Сила реакции опоры движение по окружности

Период обращения груза Сила реакции опоры движение по окружности

Натяжение нити Сила реакции опоры движение по окружности

Сила реакции опоры движение по окружности

6. На автомобиль действуют (рис. 5) сила тяжести Р = m·g, сила реакции со стороны цилиндра N и сила трения Fтp. Так как автомобиль движется по горизонтальному кругу, то силы Р и Fтp уравновешивают друг друга, а сила N создает центростремительное ускорение Сила реакции опоры движение по окружности. Максимальное значение силы трения связано с силой реакции N соотношением: Fтp = k·N. В результате получаем систему уравнений: Сила реакции опоры движение по окружности, из которой находится минимальное значение коэффициента трения Сила реакции опоры движение по окружности

Сила реакции опоры движение по окружности

7. Груз будет двигаться по окружности радиуса l (рис. 6). Центростремительное ускорение груза Сила реакции опоры движение по окружности(υ — скорость груза) создается разностью величин силы натяжения нити Т и проекции силы тяжести m·g направление нити: Сила реакции опоры движение по окружности. Поэтому Сила реакции опоры движение по окружности, где β — угол, образуемый нитью с вертикалью. По мере того, как груз будет опускаться, его скорость будет расти, а угол β будет уменьшаться. Натяжение нити станет максимальным при угле β = 0 (в тот момент, когда нить будет вертикальной): Сила реакции опоры движение по окружности. Максимальная скорость груза υ0 находится по углу α, на который отклоняют нить, из закона сохранения энергии:

Сила реакции опоры движение по окружности

Используя это соотношение, для максимального значения натяжения нити получаем формулу: Tmax = m·g·(3 – 2 cos α). По условию задачи Tmах = 2m·g. Приравнивая эти выражения, находим cos α = 0,5 и, следовательно, α = 60°.

Определим теперь натяжение нити при Сила реакции опоры движение по окружности. Скорость груза в этот момент также находится из закона сохранения энергии:

Сила реакции опоры движение по окружности

Подставляя значение υ1 в формулу для силы натяжения, находим:

🔍 Видео

10.12.20 физика, вес, сила реакции опоры, сила натяжения нити, движение по окружностиСкачать

10.12.20 физика, вес, сила реакции опоры, сила натяжения нити, движение по окружности

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Физика, 11 класс, ЕГЭ, 30 задача. Движение по окружности. Пример 5Скачать

Физика, 11 класс, ЕГЭ, 30 задача. Движение по окружности. Пример 5

Лекция 6.1 | Описание движения по окружности | Александр Чирцов | ЛекториумСкачать

Лекция 6.1 | Описание движения по окружности | Александр Чирцов | Лекториум

Движение тел по окружностиСкачать

Движение тел по окружности

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Вес и сила реакции опоры. Конспекты по физике ОГЭ — https://vk.cc/cfy0eh 📚 #огэфизика #физикаСкачать

Вес и сила реакции опоры. Конспекты по физике ОГЭ — https://vk.cc/cfy0eh 📚 #огэфизика #физика

9 класс, 24 урок, Движение тел по окружностиСкачать

9 класс, 24 урок, Движение тел по окружности

Урок 62. Сила тяжести и вес тела. Невесомость.Скачать

Урок 62. Сила тяжести и вес тела. Невесомость.

Динамика движения по окружности. Алгоритм решения задач.Скачать

Динамика движения по окружности. Алгоритм решения задач.

Физика 9 класс. Движение по окружностиСкачать

Физика 9 класс. Движение по окружности

Физика ЕГЭ | Динамика и кинематика вращательного движения | Движение по окружности | ЕГЭ на 100 !Скачать

Физика ЕГЭ | Динамика и кинематика вращательного движения | Движение по окружности |  ЕГЭ на 100 !

Физика, Динамика, Движение по окружностиСкачать

Физика, Динамика, Движение по окружности

Формулы механики 2, движение по окружности, центростремительное ускорениеСкачать

Формулы механики 2, движение по окружности, центростремительное ускорение
Поделиться или сохранить к себе: