- Формула бинома Ньютона
- Связь бинома Ньютона с треугольником Паскаля
- Свойства биномиальных коэффициентов
- Конспект на тему «Бином Ньютона. Треугольник Паскаля» (для студентов)
- Бином Ньютона
- Бином Ньютона — формула
- Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля
- Доказательство формулы бинома Ньютона
- 📹 Видео
Видео:Бином Ньютона и его свойства. 9 класс.Скачать
Формула бинома Ньютона
В Таблице 1 из раздела «Формулы сокращенного умножения» приведены формулы для натуральных степеней бинома
в случаях, когда n = 1, 2, 3, 4, 5, 6.
В настоящем разделе рассматривается общий случай этой формулы, т.е. случай произвольного натурального значения n .
Утверждение . Для любого натурального числа n и любых чисел x и y справедлива формула бинома Ньютона :
– числа сочетаний из n элементов по k элементов.
В формуле (1) слагаемые
называют членами разложения бинома Ньютона , а числа сочетаний – коэффициентами разложения или биномиальными коэффициентами .
Если в формуле (1) заменить y на – y , то мы получим формулу для n — ой степени разности:
Видео:Треугольник ПаскаляСкачать
Связь бинома Ньютона с треугольником Паскаля
Напомним, что треугольник Паскаля имеет следующий вид:
№ | Треугольник Паскаля |
0 | 1 |
1 | 1 1 |
2 | 1 2 1 |
3 | 1 3 3 1 |
4 | 1 4 6 4 1 |
5 | 1 5 10 10 5 1 |
6 | 1 6 15 20 15 6 1 |
… | … |
Поскольку числа, составляющие треугольник Паскаля, являются биномиальными коэффициентами, то треугольник Паскаля можно переписать в другом виде:
№ | Треугольник Паскаля |
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
… | … |
Треугольник Паскаля |
… |
Треугольник Паскаля |
… |
Видео:Бином Ньютона и треугольник Паскаля | Учитель года Москвы — 2020Скачать
Свойства биномиальных коэффициентов
Для биномиальных коэффициентов справедливы равенства:
к доказательству которых мы сейчас и переходим.
Докажем сначала равенство 1.
Это равенство отражает основное свойство треугольника Паскаля, заключающееся в том, что в каждой из строк треугольника Паскаля, начиная со строки с номером 2 , между числами 1 стоят числа, каждое из которых равно сумме двух чисел, стоящих над ним в предыдущей строке.
Для доказательства равенства 1 воспользуемся формулой (2):
что и требовалось.
Для доказательства равенства 2 положим в формуле бинома Ньютона (1) x = 1, y = 1.
Если же в формуле бинома Ньютона (1) взять x = 1, y = –1, то получится равенство 3.
Перейдем к доказательству равенства 4. С этой целью положим в формуле бинома Ньютона (1) y = 1
Воспользовавшись очевидным равенством
перепишем формулу (3) в другом виде
Если теперь перемножить формулы (3) и (4), то мы получим равенство:
Если к левой части формулы (5) применить формулу бинома Ньютона, а затем, раскрыв в правой части скобки и приведя подобные члены, приравнять коэффициенты при x n в левой и в правой частях, то мы получим следующее равенство:
Видео:Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |Скачать
Конспект на тему «Бином Ньютона. Треугольник Паскаля» (для студентов)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Формула бинома Ньютона. Треугольник Паскаля
Мы познакомимся с формулой бинома Ньютона. Выясним, что эта формула согласуется с формулами квадрата и куба суммы и разности. Рассмотрим, как использовать формулу бинома Ньютона при увеличении показателя степени , выясним, какое отношение имеет треугольник Паскаля к биному Ньютона. Рассмотрим примеры, с использованием бинома Ньютона и треугольника Паскаля.
Бином Ньютона — формула разложения произвольной натуральной степени двучлена в многочлен. Каждый из нас изучал наизусть формулы «квадрата суммы»
и «куба суммы»
, но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности.
Чтобы не совершить ошибку и применяется формула бинома Ньютона и треугольник Паскаля.
Формула бинома Ньютона для натуральных n имеет вид:
где числа – называют биномиальными коэффициентами.
– формула для числа сочетаний,
.
К примеру, известная формула сокращенного умножения «квадрат суммы» вида:
есть частный случай бинома Ньютона при n=2.
Выражение, которое находится в правой части формулы бинома Ньютона, называют разложением выражения
Запомнить формулу действительно непросто. Но попытаемся её проанализировать.
Видно, что в любом многочлене присутствуют и
с коэффициентами 1. Ясно также, что всякий иной член многочлена выглядит как произведение определённых степеней каждого из слагаемых двучлена
), причём сумма степеней всегда равна n.
Например, в выражении сумма степеней сомножителей во всех членах равна трём (3, 2+1, 1+2, 3). То же самое справедливо и для любой другой степени. Вопрос лишь в том, какие коэффициенты следует ставить при членах.
Видимо, для того чтобы облегчить труд обучающихся, великий французский математик и физик Блез Паскаль триста пятьдесят лет назад придумал специальный инструмент для определения этих самых коэффициентов — «треугольник Паскаля»
Биномиальные коэффициенты для различных n удобно представлять в виде таблицы, которая называется арифметический треугольник Паскаля.
В общем виде треугольник Паскаля имеет следующий вид:
Видео:БИНОМ Ньютона | треугольник ПаскаляСкачать
Бином Ньютона
Видео:Бином Ньютона: формула, доказательство и Треугольник ПаскаляСкачать
Бином Ньютона — формула
С натуральным n формула Бинома Ньютона принимает вид a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . . + C n n — 1 · a · b n — 1 + C n n · b n , где имеем, что C n k = ( n ) ! ( k ) ! · ( n — k ) ! = n ( n — 1 ) · ( n — 2 ) · . . . · ( n — ( k — 1 ) ) ( k ) ! — биномиальные коэффициенты, где есть n по k , k = 0 , 1 , 2 , … , n , а » ! » является знаком факториала.
В формуле сокращенного умножения a + b 2 = C 2 0 · a 2 + C 2 1 · a 1 · b + C 2 2 · b 2 = a 2 + 2 a b + b 2
просматривается формула бинома Ньютона, так как при n = 2 является его частным случаем.
Первая часть бинома называют разложением ( a + b ) n , а С n k · a n — k · b k — ( k + 1 ) -ым членом разложения, где k = 0 , 1 , 2 , … , n .
Видео:#219. БИНОМ НЬЮТОНА ДЛЯ ЧАЙНИКОВСкачать
Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля
Представление биномиальных коэффициентов для различных n осуществляется при помощи таблицы, которая имеет название арифметического треугольника Паскаля. Общий вид таблицы:
1 | |
2 |
Показатель степени | Биноминальные коэффициенты | ||||||||||
0 | C 0 0 | ||||||||||
1 | C 1 0 | C 1 1 | |||||||||
2 | C 2 0 | C 2 1 | C 2 2 | ||||||||
3 | C 3 0 | C 3 1 | C 3 2 | C 3 3 | |||||||
⋮ | … | … | … | … | … | … | … | … | … | ||
n | C n 0 | C n 1 | … | … | … | … | … | C n n — 1 | C n n |
При натуральных n такой треугольник Паскаля состоит из значений коэффициентов бинома:
Показатель степени | Биноминальные коэффициенты | ||||||||||||||
0 | 1 | ||||||||||||||
1 | 1 | 1 | |||||||||||||
2 | 1 | 2 | 1 | ||||||||||||
3 | 1 | 3 | 3 | 1 | |||||||||||
4 | 1 | 4 | 6 | 4 | 1 | ||||||||||
5 | 1 | 5 | 10 | 10 | 5 | 1 | |||||||||
⋮ | … | … | … | … | … | … | … | … | … | … | … | … | … | ||
n | C n 0 | C n 1 | … | … | … | … | … | … | … | … | … | C n n — 1 | C n n |
Боковые стороны треугольника имеют значение единиц. Внутри располагаются числа, которые получаются при сложении двух чисел соседних сторон. Значения, которые выделены красным, получают как сумму четверки, а синим – шестерки. Правило применимо для всех внутренних чисел, которые входят в состав треугольника. Свойства коэффициентов объясняются при помощи бинома Ньютона.
Видео:Треугольник ПаскаляСкачать
Доказательство формулы бинома Ньютона
Имеются равенства, которые справедливы для коэффициентов бинома Ньютона:
- коэффициента располагаются равноудалено от начала и конца, причем равны, что видно по формуле C n p = C n n — p , где р = 0 , 1 , 2 , … , n ;
- C n p = C n p + 1 = C n + 1 p + 1 ;
- биномиальные коэффициенты в сумме дают 2 в степени показателя степени бинома, то есть C n 0 + C n 1 + C n 2 + . . . + C n n = 2 n ;
- при четном расположении биноминальных коэффициентов их сумма равняется сумме биномиальных коэффициентов, расположенных в нечетных местах.
Равенство вида a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . . + C n n — 1 · a · b n — 1 + C n n · b n считается справедливым. Докажем его существование.
Для этого необходимо применить метод математической индукции.
Для доказательства необходимо выполнить несколько пунктов:
- Проверка справедливости разложения при n = 3 . Имеем, что
a + b 3 = a + b a + b a + b = a 2 + a b + b a + b 2 a + b = = a 2 + 2 a b + b 2 a + b = a 3 + 2 a 2 b + a b 2 + a 2 b + 2 a b + b 3 = = a 3 + 3 a 2 b + 3 a b 2 + b 3 = C 3 0 a 3 + C 3 1 a 2 b + C 3 2 a b 2 + C 3 3 b 3 - Если неравенство верно при n — 1 , тогда выражение вида a + b n — 1 = C n — 1 0 · a n — 1 · C n — 1 1 · a n — 2 · b · C n — 1 2 · a n — 3 · b 2 + . . . + C n — 1 n — 2 · a · b n — 2 + C n — 1 n — 1 · b n — 1
- Доказательство равенства a + b n — 1 = C n — 1 0 · a n — 1 · C n — 1 1 · a n — 2 · b · C n — 1 2 · a n — 3 · b 2 + . . . + C n — 1 n — 2 · a · b n — 2 + C n — 1 n — 1 · b n — 1 , основываясь на 2 пункте.
Доказательство 1
a + b n = a + b a + b n — 1 = = ( a + b ) C n — 1 0 · a n — 1 · C n — 1 1 · a n — 2 · b · C n — 1 2 · a n — 3 · b 2 + . . . + C n — 1 n — 2 · a · b n — 2 + C n — 1 n — 1 · b n — 1
Необходимо раскрыть скобки, тогда получим a + b n = C n — 1 0 · a n + C n — 1 1 · a n — 1 · b + C n — 1 2 · a n — 2 · b 2 + . . . + C n — 1 n — 2 · a 2 · b n — 2 + + C n — 1 n — 1 · a · b n — 1 + C n — 1 0 · a n — 1 · b + C n — 1 1 · a n — 2 · b 2 + C n — 1 2 · a n — 3 · b 3 + . . . + C n — 1 n — 2 · a · b n — 1 + C n — 1 n — 1 · b n
Производим группировку слагаемых
a + b n = = C n — 1 0 · a n + C n — 1 1 + C n — 1 0 · a n — 1 · b + C n — 1 2 + C n — 1 1 · a n — 2 · b 2 + . . . + + C n — 1 n — 1 + C n — 1 n — 2 · a · b n — 1 + C n — 1 n — 1 · b n
Имеем, что C n — 1 0 = 1 и C n 0 = 1 , тогда C n — 1 0 = C n 0 . Если C n — 1 n — 1 = 1 и C n n = 1 , тогда C n — 1 n — 1 = C n n . При применении свойства сочетаний C n p + C n p + 1 = C n + 1 p + 1 , получаем выражение вида
C n — 1 1 + C n — 1 0 = C n 1 C n — 1 2 + C n — 1 1 = C n 2 ⋮ C n — 1 n — 1 + C n — 1 n — 2 = C n n — 1
Произведем подстановку в полученное равенство. Получим, что
a + b n = = C n — 1 0 · a n + C n — 1 1 + C n — 1 0 · a n — 1 · b + C n — 1 2 + C n — 1 1 · a n — 2 · b 2 + . . . + + C n — 1 n — 1 + C n — 1 n — 2 · a · b n — 1 = C n — 1 n — 1 · b n
После чего можно переходить к биному Ньютона, тогда a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . . + C n n — 1 · a · b n — 1 + C n n · b n .
📹 Видео
✓ Бином Ньютона. Игра в слова. Числа сочетаний | Комбинаторика | Ботай со мной #057 | Борис ТрушинСкачать
Бином Ньютона и треугольник ПаскаляСкачать
ТРЕУГОЛЬНИК ПАСКАЛЯ 😊 ЧАСТЬ I #shorts #математика #егэ #задачи #задачаналогику #егэ2022 #огэ2022Скачать
Бином Ньютона максимально простым языкомСкачать
Применение формулы бинома Ньютона и треугольника ПаскаляСкачать
Бином Ньютона. 10 класс.Скачать
Зачем нужен треугольник Паскаля (спойлер: для формул сокращённого умножения)Скачать
Треугольник Паскаля Python. Коэффициенты для Бинома НьютонаСкачать
Бином Ньютона.Треугольник Паскаля.Скачать
Бином Ньютона. Практическая часть. 10 класс.Скачать
Урок 10. Бином Ньютона. Треугольник Паскаля. Алгебра 11 класс.Скачать
Бином Ньютона и треугольник ПаскаляСкачать